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Renormalization-group theoretical reduction
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It has been known for some time that singular perturbation and reductive perturbation can be unified from
the renormalization-group~RG! theoretical point of view. However, renormalization-group approaches to
singularly perturbed problems require explicit perturbation results, so they could be complicated practically.
The approach proposed in this paper has considerably eliminated the need for explicit perturbation results,
making the RG approach simpler than many conventional singular perturbation approaches. Consequently, we
may assert that reductive extraction of global features of the problem is the essence of singular perturbation
methods.
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I. INTRODUCTION

It has been realized for some time@1# that
renormalization-group equations associated with the fi
theoretical renormalization-group ~RG! methods
@Stückelberg-Petermann~-Gell-Mann-Low! RG# can be inter-
preted as slow motion equations, amplitude equations, an
forth. These equations have been traditionally derived w
the aid of the so-called reductive perturbation theory@2,3#. It
is true that all the famous named equations, such as the
gers equation, the Kuramoto-Sivashinsky equation,
Boltzmann equation@4#, the nonlinear Schro¨dinger equation,
etc., can be interpreted as RG equations.

Suppose a spatially extended system exhibits a stat
need not be simple, but practically it is often a uniform, o
space-time periodic state. We add to the system a pertu
tion, e.g., some nonlinear terms, dissipative terms, etc.
system is usually not structurally stable against such per
bations, so that perturbation results are, if computed naiv
plagued by singularities~secular terms!. It has been recog
nized that these singularities in the naive perturbation th
ries can be renormalized away by the modification~renor-
malization! of the parameters in the unperturbed st
~amplitude, phase, etc.! @5–7# and the results agree with o
are sometimes~numerically! better than those traditionall
computed with the aid of singular perturbation methods@8#.
The modified parameters are governed by the RG equat
that turn out to be, e.g., large-scale slow-motion equati
~reduced equations! ~often the famous named equations!. Let
us call the method to obtain space-time large scale equa
as RG equations theRG theoretical reduction~or thereduc-
tive RG method!.

Graham@9# has utilized this RG theoretical reduction
derive the isotropic Newell-Whitehead equation@10# pro-
posed by Gunaratneet al. @11#. The derivation was ques
tioned by Matsuba and Nozaki@12#: while the derivation is
based on explicit elimination of secular terms, it is not cle
whether all of the secular terms are consistently removed

*Permanent address.
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whether differential operators with different orders are co
sistently retained in the derived equation.

As can be seen from Graham’s paper, Sasa’s paper@13#,
or Ref. @8#, it appears that we can accomplish by the R
reduction the same goal the conventional reductive pertu
tion can achieve. However, the RG reduction seems to
more demanding in the actual calculation than the conv
tional reductive perturbation@3#, because the former seem
to require explicit functional forms of secular terms. Sin
we are often interested in deriving the reduced equatio
and not in their explicit solutions, the RG reduction so f
being practiced@1,8# is methodologically awkward.

The purpose of the present paper is to free the RG th
retical reduction from the necessity of explicit secular ter
as much as possible, and to stress the significance of sy
reduction in singular perturbation in general. The conve
tional reductive perturbations do not require explicit pert
bation results. This advantageous feature can now be c
bined with advantages of the RG approach demonstrate
Ref. @8#. For example, to the lowest nontrivial order, that
to the order usual calculations are performed, our reduc
RG method is probably the simplest reduction method.
@8# this paper largely consists of demonstrations with e
amples; it is still hard to assert anything extremely gene
but the approach described in this paper can handle the
amples in Ref.@8# that already cover many representati
examples of classic singular perturbation problems.

In Sec. II, details of the second order standard RG per
bative calculation are supplied for the Rayleigh equation
motivate the reductive RG theory proposed in this paper. T
practically oriented reader can skip this section. In Sec.
our improved method for autonomous ordinary different
equations~ODE’s! is explained. The method introduces
device called the proto-RG equation that can be obtai
almost by inspection. Its reduction to the standard RG eq
tion is, when it can be obtained by our conventional R
method, a purely mechanical calculation much easier t
explicitly obtaining the secular terms. In Sec. IV, the R
reduction to all orders is performed for linear ODE’s. In Se
V, we briefly discuss ‘‘beyond all orders.’’ We demonstra
that renormalized perturbation series in principle can con
©2001 The American Physical Society01-1
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K. NOZAKI AND Y. OONO PHYSICAL REVIEW E 63 046101
all the information about the original system, so that such
e2t/e can be obtained from the power series expansion ine.
In Sec. VI, we note some important features of partial d
ferential equations~PDE’s!. In Sec. VII, as the simplest ap
plication of reductive RG to PDE’s, we discuss the reduct
of some examples of evolution equations. In Sec. VIII, t
reduction of the Swift-Hohenberg equation is revisited to
second order. In Sec. IX concluding remarks are given.

II. STANDARD RG PERTURBATION REVISITED

To understand the RG reduction scheme and to un
stand the merit of the streamlined version explained in
paper, or at least to motivate the idea, it is advantageou
have some experience of the RG approach to the sing
perturbation. Therefore we give nontrivial details of an e
ample whose final result has already been published in
@8#. For those who wish to know the practical aspect of
proposed method in this paper, the first few paragraphs o
next section should be a good starting point@with reference
to the formulas in this section up to Eqs.~2.6! and ~2.11!#.

The example we discuss is the Rayleigh equation:

d2y

dt2
1y5e

dy

dt F12
1

3 S dy

dt D
2G . ~2.1!

We expand the solution as

y5y01ey11e2y21••• . ~2.2!

These expansion coefficients obey the following equation

S d2

dt2
11D y050, ~2.3!

S d2

dt2
11D y15

dy0

dt
2

1

3 S dy0

dt D 3

, ~2.4!

S d2

dt2
11D y25

dy1

dt F12S dy0

dt D 2G . ~2.5!

Let us write the solution to Eq.~2.3! as

y05Aeit1A* e2 i t , ~2.6!

whereA is a complex constant. Equation~2.4! reads

S d2

dt2
11D y15 iA~12uAu2!eit1

i

3
A3e3i t1c.c., ~2.7!

where c.c. denotes the complex conjugate terms. We n
not worry about the initial condition for this equation, so w
have only to make a special solution

y15
1

2
teitA~12uAu2!2

i

24
A3e3i t1c.c. ~2.8!
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The right hand side~rhs! of Eq. ~2.5! need not be computed
in detail, but we must keep the resonant and unboun
terms. Thus the rhs of Eq.~2.5! reads

1

2
~122uAu2!$A~12uAu2!1 i tA~12uAu2!%eit

1
1

8
AuAu4eit1

1

2
uAu2$A~12uAu2!2 iA~12uAu2!t%eit

1
i

2
A3~12uAu2!te3i t1c.c. ~2.9!

From this the secular terms~indicated by@ #S) in y2 read

@y2#S5
1

2
A~12uAu2!2

t

2i
eit1

i

2
A~12uAu2!~123uAu2!

3S t2

4i
1

t

4Deit1
1

16i
AuAu4teit

2
i

16
A3~12uAu2!te3i t1c.c. ~2.10!

The basic strategy of renormalization of secular terms
to split the secular time dependence such ast2 in the prefac-
tors of the exponential terms ast25(t22t2)1t2, and absorb
t2 into the renormalization constantZ of the free paramete
in the solution~for the present exampleA is the parameter
we can choose freely by choosing an appropriate initial c
dition; note that the renormalization procedure does not n
essarily imply the time shiftt→t2t).

We introduce the renormalized amplitudeAR as A
5ZAR . We expandZ in powers ofe and write

A5AR~11eZ11e2Z21••• !. ~2.11!

The equation for the renormalized amplitude should be
amplitude equation

dA

dt
50. ~2.12!

From this to ordere2 we obtain the renormalization-grou
equation

dAR

dt
52eARS dZ1

dt
2eZ1

dZ1

dt
1e

dZ2

dt D . ~2.13!

Thus we have only to determine the renormalization c
stant.

Z is determined to absorb the powers oft separated out
from the seculart dependences in the bare perturbation res
for y. The first order is easy to obtain from Eq.~2.8! as

Z11~12uARu2!
t

2
50. ~2.14!

To order unity this gives~note thatdAR /dt is of ordere)
1-2
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RENORMALIZATION-GROUP THEORETICAL REDUCTION PHYSICAL REVIEW E63 046101
dZ1

dt
52

1

2
~12uARu2!, ~2.15!

so that the renormalization-group equation to ordere reads
@cf. Eq. ~2.13!!#

dAR

dt
5

e

2
AR~12uARu2!. ~2.16!

The second order singular terms contain terms prop
tional to teit , t2eit , andte3i t ~and their complex conjugates!.
The singular terms containinge3i t are totally removed byZ1
just determined as Eq.~2.14!. If we wish to compute higher
order results, then we must deal withe5i t , e7i t , etc. The
secular terms containing these exponential factors~hence-
forth callednonresonant secular terms! are all removed by
the results for the renormalization constant obtaina
through lower order calculations as in this case~for example,
to the second order,Z2 is not needed, but onlyZ1 as seen
above!. This tells us that if we wish to determineZ, we have
only to study secular terms containinge6 i t , which we will
henceforth call theresonant secular terms.

To remove the resonant secular terms to ordere2, we
must require@14#

Z25
t2

8
~12uARu2!~123uARu2!1

t

8
i ~12uARu4!1

i

16
uARu4t.

~2.17!

To obtain the amplitude equation we need the deriva
of Z1 with respect tot to ordere:

dZ1

dt
52

1

2
~12uARu2!1e

t

2
uARu2~12uARu2!, ~2.18!

where Eq.~2.16! has been used. Putting the results so
obtained into Eq.~2.13!, we see total cancellation of th
terms proportional tot, and obtain

dAR

dt
5e

1

2
AR~12uARu2!2e2

i

16
AR~22uARu4!.

~2.19!

This is equivalent to the RG equation already published
Ref. @8#.

Closely looking at the standard RG procedure, we no
that ~i! only resonant singular terms have to be conside
@15#, and that~ii ! the highest orderZn has only to be com-
puted for linear terms int.

With these observations, the procedure of the stand
RG may be somewhat simplified, but still we need alm
explicit secular terms. Hence the RG method, although
works and is often simpler than many standard technique
still an inelegant procedure.

The above calculation suggests, as emphasized in
@8#, that we do not need any insight as to the solution
wish to compute and, consequently, very mechanical pro
dures suffice. However, even for linear ODE’s, this is n
quite true, if we do not convert it into the standard form
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which the WKB method is applicable@i.e., d2u/ds2

5Q(s)u]. This sort of difficulty is pointed out in Ref.@17#
with a seemingly benign

d2y

dt2
1e

dy

dt
1y50. ~2.20!

This equation needs some care about the initial condition
approximate solutions, if we wish to obtain the RG equat
to higher order. Thus we need some insight about the s
tion. Furthermore, the following counterexample due to
and Kuwamura is quoted also in Ref.@17#:

dy

dt
52e2y1ey2 ~2.21!

cannot easily be solved by the naive subtraction scheme
the aid of the perturbative expansion in powers ofe.

All these difficulties are, according to our current view
due to the fact that we construct solutions and then de
coarse-grained equations. The step to construct perturba
solutions becomes, so to speak, a bottleneck between
original equation and the final slow motion equation. T
only way to overcome the difficulties pointed out in Ref.@17#
seems to maximally avoid explicit calculations. This b
comes especially important for PDE due to the reason
plained in Sec. VI. The chief aim of this paper is to provi
a RG means that is maximally abstractin order to make it
more practical and convenient than it is now.

III. PROTO-RENORMALIZATION-GROUP
EQUATIONS—INTRODUCTION

In order to devise a much simpler method to obtain
renormalization-group equation, we wish to make the st
dard procedure in the preceding section as abstract~implicit!
as possible.@However, this section may be read largely wit
out referring to the preceding section except for the per
bation Eqs.~2.4! and ~2.5! and the definition ofZi in Eq.
~2.11!.#

Due to the structure of Eq.~2.4! its solution has the fol-
lowing structure:

y15P1eit1Q1e3i t1c.c. ~3.1!

By inspection we see thatP15P1(t,A) is a first degree poly-
nomial in t, andQ15Q1(t,A) is a constant. Here, their de
pendence onA is explicitly denoted. As seen from Eq.~2.4!
they obey the following equations:

LtP15 iA~12uAu2!, ~3.2!

RtQ15
1

3
iA3, ~3.3!

where

Lt[
d2

dt2
12i

d

dt
, ~3.4!
1-3



e
r

on

th
p

th
he
er
er
io
th
lt

ng

ai
em

rio
om
e
to

s
w
e
o

ve
rit

Its

is

e

we
ap-
d to

e
ny
he
ar
c-
he
ion
ady

tion

it
-

he
e it

ts,

K. NOZAKI AND Y. OONO PHYSICAL REVIEW E 63 046101
Rt[
d2

dt2
16i

d

dt
28. ~3.5!

The renormalized perturbation result can be written as

y~ t !5AR~t!eit1e$P1@ t,AR~t!#2 P̂1@t,AR~t!#%eit1••• .

~3.6!

Here, P̂1 is the secular part ofP1 ~actually P15 P̂1, if P1
does not have the constant term; this is the usual choic
P1 as well as ours!. Since we wish to go to higher orde
calculations later,A’s in P1 are replaced withAR . However,
to this lowest nontrivial order, we may identifyAR with A.
Also we ignore the nonsecular terms. LetLt be the same
operator asLt with t being replaced byt. Then, with the aid
of Eq. ~3.2!,

05Lty5@Lt AR2LtP̂1~t,AR!#eit , ~3.7!

or

S d2

dt2
12i

d

dtD AR~t!5e iAR~12uARu2!. ~3.8!

Inspecting this equation, we realize that differentiati
with respect tot raises the power ofe. Therefore, to ordere,
we may discard the second order derivative: changing
variable fromt to t, we obtain the renormalization-grou
equation to ordere:

dAR

dt
5

1

2
eAR~12uARu2!. ~3.9!

For this reason, we call Eq.~3.8! a proto-RG equation;
roughly speaking, a proto-RG equation is an equation
can be obtained by applying the ‘‘simplest’’ operator to t
renormalized perturbation series to eliminate the gen
form of the subtraction terms in the series. As we see h
from this equation we can easily obtain the RG equat
algebraically. The most important observation is that to
lowest nontrivial order, we do not need any explicit resu
As we will see later this is a useful property for reduci
PDE’s.

Although we say that in our RG approach we can obt
the equation without any prior knowledge about the syst
or its solution, we have used implicitly thatAR is of order 1.
Therefore the reader might claim that we need some p
knowledge or requirement to derive the RG equation fr
the corresponding proto-RG equation. When we reduc
system, we must specify what sort of solution we wish
study. If we are interested in~or expect! a small solution of
ordere, we should obtain a different equation~i.e., a differ-
ent RG equation! from the proto-RG equation that allow
such a solution. If we could obtain such an RG equation,
may conclude that indeed such a global solution is allow
by the original system. If we fail, it implies that there is n
consistent long time behavior for which the solution beha
as expected. Thus the criticism above is not really a c
04610
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cism, but indicates the freedom of choice in reduction.
choice is not really a concern of a reduction scheme.

Thus the strategy to compute the ordere singular pertur-
bation result is to write down the proto-RG equation. Th
equation simply gives the RG Eq.~3.9!, and the renormal-
ized perturbation result

y~ t !5AR~ t !eit1eQ1e3i t , ~3.10!

where Eq.~3.3! or 28Q15 iAR
3/3 gives all we want, becaus

we knowQ1 is a constant.
Instead of calculating]y/]t50, calculatingLty50 is

practically the proto-RG method. The basic idea is that
should use the information of the system under study c
tured in the secular term instead of using a generic metho
remove the secular terms~actually, differentiation with re-
spect tot does not always work!. Can we use the techniqu
to obtain higher order results in a similar fashion without a
explicit calculation? As we will see in the next section t
answer is yes to all orders for linear ODE’s. For nonline
ODE’s, we need slightly more information than the fun
tional forms of the solutions. Still, as is illustrated below, t
calculation is far easier than most singular perturbat
methods and than our previous RG approach that is alre
simpler than most singular perturbation methods. Equa
~2.5! reads

S d2

dt2
11D y25$~122uAu2!~ iP11 Ṗ1!1~3iQ11Q̇1!A* 2

1~2 iP1* 1 Ṗ1* !A2%eit1$~ iP11 Ṗ1!A2

13i ~122uAu2!Q1%e
3i t

1~3iQ11Q̇1!A2e5i t1c.c. ~3.11!

Therefore its solution has the following form:

y25P2~ t,A!eit1Q2~ t,A!e3i t1S2~ t,A!e5i t1c.c.
~3.12!

The term containingP2 is a resonant secular term, because
is a polynomial timeseit that is in resonance with the differ
ential operator on the left hand side of Eq.~3.11!. SinceP1 is
degree one,P2(t) must be a second degree polynomial. T
term containingQ2 is a nonresonant secular term, becaus
is secular but does not contain the resonant factore6 i t . The
secular nature ofQ2 is due to the appearance ofP1 together
with e3i t in the right hand side of Eq.~3.11!. S2 is not sin-
gular ~is a constant!. In any case, in order to note these fac
we need only inspections. Putting Eq.~3.12! into Eq. ~3.11!,
we see

LtP25~122uAu2!~ iP11 Ṗ1!1~3iQ11Q̇1!A* 2

1~2 iP1* 1 Ṗ1* !A2. ~3.13!

So far no explicit solution has been required at all.
1-4
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RENORMALIZATION-GROUP THEORETICAL REDUCTION PHYSICAL REVIEW E63 046101
Our main assertion in this section is the following. T
general form of the proto-RG equation~for weakly nonlinear
oscillators! reads

Lt AR5eLtP̂1~t,AR!1e2LtP̂2~t,AR!1•••, ~3.14!

where on the right hand sideLt does not act onAR ~i.e., AR

is treated as a constant whenP̂i(t,AR) are differentiated
with respect tot), and all the explicitlyt dependent terms
must be ignored from the result~by settingt50 after differ-
entiation!. As we will see, the explicit expression of th
formula can be obtained almost without any actual calcu
tion.

Let us demonstrate Eq.~3.14! ~including the prescription
described below it!. Our starting point is a general renorma
ization procedure, although the result we need is very sim
If we keep only the resonant secular terms@18#, the naive
perturbation result reads

y~ t !5Aeit1eP1~ t,A!eit1e2P2~ t,A!eit1e3P3~ t,A!eit

1•••1c.c. ~3.15!

Let us introduce the renormalizedA as Eq.~2.11!. Then, Eq.
~3.15! can be written as

y~ t !5AR~11eZ11e2Z21••• !eit1eP1~ t,AR!eit

1e2@~P2~ t,AR!1P18~ t,AR!ARZ1!#eit

1e3S P3~ t,AR!1P28~ t,AR!ARZ1

1P18~ t,AR!ARZ21
1

2
P19~ t,AR!~ARZ1!2Deit1c.c.,

~3.16!

where partial differentiation with respect toAR is denoted
by 8. The renormalization constant is determined order
order as

ARZ11P1~t,AR!50,

ARZ21P2~t,AR!1P18~t,AR!ARZ150,

ARZ31P3~t,AR!1P28~t,AR!ARZ11P18~t,AR!ARZ2

1P18~ t,AR!ARZ21
1

2
P19~t,AR!~ARZ1!250.

~3.17!

From this, incidentally, we see that the procedure can
continued order by order indefinitely. Putting these into E
~3.16!, we obtain the renormalized perturbation series

y~ t !5AReit1e@P1~ t,AR!2P1~t,AR!#eit1e2$P2~ t,AR!

2P2~t,AR!1@P18~ t,AR!2P18~t,AR!#ARZ1%e
it

1e3S P3~ t,AR!2P3~t,AR!1@P28~ t,AR!
04610
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2P28~t,AR!#ARZ11@P18~ t,AR!2P18~t,AR!#ARZ2

1
1

2
@P19~ t,AR!2P19~t,AR!#~ARZ1!2Deit1••• .

~3.18!

Notice that if we put t5t, then this reduces toy(t)
5AR(t)eit as should be, because we have not written n
resonant terms explicitly.

Notice that Eq.~3.17! is the order by order expression o

A2AR~t!1P~t,A!50, ~3.19!

and Eq.~3.18! is thee expansion result of

y~ t !5AR~t!eit1@P~ t,A!2P~t,A!#eit1c.c. ~3.20!

as expected from consistency. ApplyingLt to this equation,
we obtain

Lt AR~t!5Lt P~t,A!. ~3.21!

After calculating the right hand side, we replaceA with
AR(t)Z. Intuitively speaking, the amplitude equation for a
autonomous equation should be autonomous, so the r
hand side of this equation should not depend ont explicitly.
We can simply use this fact and sett50 in the right hand
side.Z51 if we sett50. Thus we have shown Eq.~3.14!
~including the prescription described there!.

Let us demonstrate that for autonomous problems
proto-RG equation~and consequently the RG equation! must
be autonomous. That is,Lt AR does not depend ont explic-
itly. Physically, this is natural, because the long term beh
ior of an autonomous equation should also be autonom
After renormalization, the perturbative result may be writt
order by order as

y~ t !5AR~ t !eit1F~ t !1c.c., ~3.22!

whereF(t) contains higher frequency terms@if we regardAR
to be constant, i.e., if we ignore the very low frequency b
havior5 secular behavior ofAR(t), thenF(t) does not con-
tain any lower frequency terms thane62i t ]. If we introduce
this equation into the original equation, we get

@LtAR~ t !#eit1F̃~ t !5eN„y~ t !…, ~3.23!

whereN is the nonlinear term in the original equation, an
F̃5LtF. Since the original equation is autonomous, even
we shift t→t1t, this equation continues to hold. Note th
the right hand side does not depend on time explicitly. He
the same must be true for the left hand side. Now, we s
time ast→t12p. The functional forms ofLtAR(t)eit and
F̃(t) are order by order invariant under this shift as se
from their way of construction. ThereforeLtAR(t), which
contains lower frequency behaviors, must not depend ot
explicitly.

Now, let us return to a practical~or our recommended!
second order calculation for the Rayleigh equation. We h
1-5
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K. NOZAKI AND Y. OONO PHYSICAL REVIEW E 63 046101
already obtainedLtP1 as Eq.~3.2!. To calculate the secon
order term we use Eq.~3.13! with t being replaced byt:

LtP2~t,AR!5~122uAu2!~ iP11 Ṗ1!1~3iQ11Q̇1!A* 2

1~2 iP1* 1 Ṗ1* !A2. ~3.24!

SettingA5AR and ignoring the explicitlyt-dependent terms
on the right hand side of Eq.~3.24!, we can obtain the cor
responding term in Eq.~3.14!. Since we know thatP1 is of
first degree@P1(0)50#, and thatQ1 is a constant, we obtain

LtP2~t,AR!5~122uARu2!Ṗ113iQ1AR*
21 Ṗ1* AR

2 .
~3.25!

We need

Ṗ15
1

2
A~12uAu2!, Q152

i

24
A3, ~3.26!

which can be read off from Eqs.~3.2! and~3.3! immediately.
With this minimal explicit result, we can write down th
proto-RG equation to ordere2 as

S d2

dt2
12i

d

dtD AR5 i eAR~12uARu2!

1e2S 1

8
uARu4AR1

1

2
AR~12uARu2!2D .

~3.27!

In this case we can solve this equation order by order
dAR /dt. Since

dAR

dt
5

e

2
AR~12uARu2! ~3.28!

@recall that this was obtained above from the lowest or
proto-RG equation without any explicit knowledge ofP1 and
Q1; this can of course be read off from Eq.~3.27!# to ordere,

d2AR

dt2
5

e2

4
AR~12uARu2!~123uARu2!1O~e3!.

~3.29!

From Eq.~3.27! and this, we can obtain the RG equation
order e2. Needless to say, to go to the next order we ne
slightly more explicit results~for P2, etc.!. Still, this is much
easier than the usual methods requiring detailed explicit
sults.

The proto-RG approach to the resonance problem ma
summarized as follows:

~1! Solve the zeroth order equation, and set up pertur
tion equations.

~2! Write down the general form of the corrections@as,
e.g., Eq.~3.12!#.

~3! Find the equations for resonant secular terms@as, e.g.,
Eq. ~3.25!#.

~4! Construct the proto-RG Eq.~3.14!.
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~5! Reduce the proto-RG equation to the RG equation
In this paper, we emphasize the mechanical nature of

procedure, so we adhere as much as possible to these
@step~2! may be implicit, or may be merged into step~3!#.
An important observation is that to the lowest nontrivial o
der, that is often the order we need, no explicit solution
required~as in the standard reductive perturbation!.

To illustrate the proto-RG approach with a slightly diffe
ent example, let us study the van der Pol equation:

d2y

dt2
1y5e~12y2!

dy

dt
. ~3.30!

We expand asy5y01ey11e2y21 . . . . Step~1! gives just
Eq. ~2.6!. By inspection we may assumey1 andy2 have the
same form as the Rayleigh equation@step~2!#. The perturba-
tion equations read

S d2

dt2
11D y15~12y0

2!
dy0

dt
, ~3.31!

S d2

dt2
11D y25~12y0

2!
dy1

dt
22y0y1

dy0

dt
. ~3.32!

They give

LtP15 iA~12uAu2!, ~3.33!

RtQ152 iA3, ~3.34!

and

LtP25~122uAu2!~ Ṗ11 iP1!

2 iP1* A22A* 2Q̇122iA2P1* 12iA* 2Q1 .

~3.35!

Since we knowP1 is proportional tot andQ1 is a constant,
we need only the following formula~discarding explicitly
t-dependent terms!:

LtP25~122uAu2!Ṗ112iA* 2Q1 . ~3.36!

This is the end of step~3!. Let us defineP1 andP2 with-
out the constant terms. The proto-RG equation has the f
of Eq. ~3.14!. To ordere, it reads

LtAR5eLtP1 , ~3.37!

that is,

S d2

dt2
12i

d

dtD AR5 i eAR~12uARu2!. ~3.38!

Therefore the lowest order RG equation is given by

dAR

dt
5

1

2
eAR~12uARu2!. ~3.39!
1-6
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The proto-RG equation to ordere2 reads, according to Eq
~3.14!,

S d2

dt2
12i

d

dtD AR5 i eAR~12uARu2!

1e2@~122uAu2!Ṗ112iA* 2Q1#.

~3.40!

The remaining task is to read offP1 andQ1 from Eqs.~3.33!
and ~3.34!. From the former, we read off

Ṗ15
1

2
A~12uAu2!. ~3.41!

From Eq.~3.34!, we readQ15 iAR
3/8 off. This is the end of

step ~4!. To obtain the second order result, we ne
d2AR /dt2 to ordere2, but this can be obtained by differen
tiating the first order result as we did above, and the resu
identical to Eq.~3.29!. Hence combining these results w
obtain

dAR

dt
5

1

2
eAR~12uARu2!2e2

i

8
AR~122uARu2!.

~3.42!

Let us conclude this section with a further abstraction.
the above we assume a certain form of secular terms suc
Eq. ~3.12!. Here, we do not even assume this. Let us return
the Rayleigh equation, and write its perturbation result
@step~2!#

y5Aeit1ep1~ t !1•••1c.c. ~3.43!

Here, notice that in contrast to the expression such as
~3.1! the structure of the first order perturbation term is n
explicit asp15P1eit1Q1e3i t . Let us introducet to denotet
appearing in the secular terms and rewritep1(t) as p̂1(t,t).
That is, p̂1 is obtained fromp1 by replacingt in the secular
term prefactors witht and discarding the terms that do n
vanish whent is set to zero@the so-called minimal subtrac
tion scheme; this procedure givesp̂15P1(t)eit in the above
example, but we do not need such an explicit form#. Then,
the renormalized perturbation series reads

y5AR~t!eit1e@p1~ t !2 p̂1~t,t !#1•••1c.c. ~3.44!

Introduction of t corresponds to the splitting ofd/dt to
d/dt1d/dt in d2/dt211. If we apply (d/dt1d/dt)211 to
p̂1 and factor outeit from the outcome, then it must b
identical to the coefficient ofeit on the right hand side of the
first order perturbation equation governingp1. This suggests
that it is convenient to introduce the following operator:

S[Pt5tS d2

dt2
12

d

dt

d

dtD , ~3.45!
04610
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whereP is an appropriate projection operator onto the n
space~i.e., the operator factoring out the coefficient ofeit in
the present case!. ~The subscriptt5t implies the prescrip-
tion: t is replaced byt after projection. This procedure is no
needed to the lowest order considered here, but if we wis
use the operator in higher order calculations we must spe
how to treatt on the right hand side.! Then,

Sp̂1~t,t !5 iA~12uAu2!. ~3.46!

This is step ~3!. We can use this relation to derive th
proto-RG equation from Eq.~3.44! as follows. ApplyingS to
Eq. ~3.44!, we just obtain@step~4!#

05F ]2

]t2
12i

]

]tGAR~t!2 iAR~12uARu2!. ~3.47!

In this slightly more abstract version, to construct the o
erator S ~that could appropriately be called the proto-R
operator! is the essence. How to construct it practically w
be found at the end of Sec. VII. A related mathemati
discussion can be found in Sec. VI.

IV. LINEAR ODE—PROTO-RG EQUATION APPROACH

When we wish to reduce a system, or to know the qu
tative behavior, we need only the lowest nontrivial ord
result or at most the next. Therefore the proto-RG proced
is a very powerful method. When the problem is linear,
can apply the method easily to all orders. To illustrate
point, let us consider the simplest case:

S e
d2

dt2
1

d

dt
11D y50. ~4.1!

If we expand

y5y01ey11•••1enyn1•••, ~4.2!

then order by order we obtain (n50,1,2, . . . , y21[0)

dyn

dt
1yn52

d2yn21

dt2
. ~4.3!

The unperturbed result readsy05Ae2t, and the solution to
Eq. ~4.3! can be written (n51,2, . . . ) as yn5APne2t,
wherePn are polynomials determined recursively as

dPn

dt
52

d2Pn21

dt2
12

dPn21

dt
2Pn21 ~4.4!

with the initial conditionPn(0)50. This condition allows us
to identify the secular termP̂n andPn itself.

Using these polynomials, the naive perturbation res
reads

y~ t !5A@11eP1~ t !1•••1enPn~ t !1•••#e2t. ~4.5!
1-7
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Thanks to the linearity of the problemPn are independent o
A. The secular part ofPn is Pn itself because of the initia
condition. The renormalization ofA can be written asA
5ZAR(t). Introducing this into Eq.~4.5!, we obtain

y~ t !5AR~t!Z@11eP1~ t !1•••1enPn~ t !1•••#e2t.
~4.6!

If we chooset2t to be higher order than any power ofe,
then obviously

Z21511eP1~t!1•••1enPn~t!1••• . ~4.7!

That is,

AR5A@11eP1~t!1•••1enPn~t!1•••#. ~4.8!

In other words, summing all the divergent terms may
understood as renormalization as in the naive renorma
tion we encounter in, e.g., many-body theory. This is a g
eral feature of linear problems.

From Eq.~4.4! through an order by order calculation, w
obtain

dAR

dt
5eS 2

d2AR

dt2
12

dAR

dt
2ARD . ~4.9!

Conversely, if we solve this equation recursively in powe
of e with the zeroth order result being constant, we can
terminePn order by order. We see that Eq.~4.9! is obtained
simply by substitutingy5AR(t)e2t into the original equa-
tion. That is, Eq.~4.9! is the proto-RG equation, and from
this we know trivially that the perturbative RG result is co
rect to all orders.

The RG equation can be obtained by solving Eq.~4.9! for
dAR /dt order by order as follows. Noticing that differentia
tion is equivalent to raising the power ine, we obtain to the
lowest order

dAR

dt
52eAR . ~4.10!

Using this to the rhs, we get to ordere2

dAR

dt
52~e12e2!AR . ~4.11!

Differentiating this further gives

d2AR

dt2
52e

dAR

dt
5e2AR ~4.12!

to order e2. From this and Eq.~4.11! we can obtain, for
example, to ordere3

dAR

dt
52~e12e215e3!AR , ~4.13!

etc.
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e
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One might say that the method is not so useful for line
problems, since, after all, the problems are simple; the sa
results can be obtained easily by, e.g., the Lie group met
@16#. This is very often the case. However, if the Lie group
not acting on a simple space (R or C), the proto-RG ap-
proach seems sometimes simpler. Let us demonstrate
point with simple examples.

Let us first consider

d2y

dt2
1~21e!

dy

dt
1y50. ~4.14!

The decay mode of the solution depends on the sign ofe, and
e50 may be understood as a bifurcation point. The unp
turbed solution has the form (a1bt)e2t, wherea andb are
constants. Therefore let us sety5A(t)e2t, and write down
the equation forA. This is the proto-RG equation in thi
case:

d2A

dt2
5eS A2

dA

dt D . ~4.15!

From this the lowest order RG equation reads~although we
must admit that we need no such fancy name for these e
tions!

d2A

dt2
5eA. ~4.16!

In this case Eq.~4.15! is actually the RG equation~to all
orders! and is not the first order equation. We would ne
some insight to derive this from naive perturbation resu
At least in our original naive RG, the problem is not ve
easy.

An interesting point of this example is that the RG equ
tion of this RG equation is useful to study its long-time b
havior. Scaling the time variable ast5Aueus, the RG equa-
tion becomes

d2A

ds2
5sgn~e!S A2Aueu

dA

dsD . ~4.17!

Consider thee,0 case. Its unperturbed solution readsA
5Beis1c.c. The proto-RG equation can be obtained by
suming thatB is time dependent:

d2B

ds2
12i

dB

ds
5A2eS iB1

dB

dsD . ~4.18!

Hence the lowest order RG equation is (B is assumed to be
not infinitesimally small!

dB

ds
52

A2e

2
B. ~4.19!

This is a convenient occasion to consider the counte
difficult examples mentioned in Sec. II. For Eq.~2.20! the
proto-RG equation reads
1-8
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d2A

dt2
12i

dA

dt
52eS iA1

dA

dt D . ~4.20!

If we may assume thatA is of order 1, then we can iterativel
solve this fordA/dt. To the lowest order we obtain

dA

dt
52

e

2
A. ~4.21!

From this we obtain

d2A

dt2
5

e2

4
A ~4.22!

to ordere2. Hence to ordere2 the RG equation reads

dA

dt
52S e

2
1

e2

8
i DA. ~4.23!

For Eq.~2.21!, the proto-RG equation is the original equ
tion itself:

dA

dt
5eA22e2A. ~4.24!

The problem is that theA we are interested in is of ordere or
smaller. Therefore both terms on the right hand side can
comparable, so no further reduction is possible. That is,
must interpret that the proto-RG equation is the RG equa
itself. The lesson of this example is that, although we tend
claim in our RG approach that we do not need anya priori
estimate of the solution, we must know at least what solut
~around what fixed point, for example! we wish to study and
its rough order.

As a not-so-trivial example of reducing the proto-RG
the RG equation, let us consider the bifurcation problem
the Mathieu equation: the problem is to find the range ov
such that

d2y

dt2
1y52e@v12cos~2t !#y ~4.25!

does not have a bounded solution. Although this is not
autonomous equation, for linear problems, it is easy to
that the proto-RG method works to all orders. The unp
turbed solution reads

y05Aeit1A* e2 i t . ~4.26!

We must first write down the proto-RG equation. Assumi
that A is a function of time, and introducing Eq.~4.26! into
Eq. ~4.25!, we get

d2A

dt2
12i

dA

dt
1c.c.52e~vA1A* !2eAe2i t1c.c.

~4.27!

Here, c.c. denotes the complex conjugate terms. Altho
we may call this the proto-RG equation of the Mathieu eq
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tion, it is not very illuminating. One might guess that, sin
the original equation is real, we have only to consider
following equation

d2A

dt2
12i

dA

dt
52e~vA1A* !2eAe2i t . ~4.28!

However, this is wrong, because the nonautonomous driv
term mixesA* andA.

The easiest method that still allows us to avoid expli
calculation of perturbative results is to expand as

y5A~ t !eit1eB~ t !e3i t1e2C~ t !e5i t1•••1c.c.
~4.29!

This form is easily guessed from the fact thate62i t appears
with e. The procedure is to get the equations~proto-RG
equations! for the coefficients, and then reduce them to t
equation ofA alone. To ordere2 we have

d2A

dt2
12i

dA

dt
52e~vA1A* !2e2B. ~4.30!

The equation forB is

eS d2B

dt2
16i

dB

dt
28BD 52eA2e2vB1e3C. ~4.31!

Since derivatives give higher order powers ofe, we see from
this B5A/8 to order e. Hence to ordere2 the proto-RG
equation is reduced to

d2A

dt2
12i

dA

dt
52e~vA1A* !2e2

A

8
. ~4.32!

It is easy to reduce this to a first order differential equat
from which we can immediately read off the stability r
quirement. Recall that the ordinary singular perturbation
quires expansion in powers ofe1/2.

Another simple example of the nonautonomous equa
that requires some care in reducing the proto-RG to the
equation is

d2u

dt2
1u5etu. ~4.33!

This is linear, but we use the ordere term as a perturbation
We use the same zeroth order result as before:u05Aeit

1c.c. Then, the first order correctionu1 obeys

d2u1

dt2
1u15tAeit1c.c., ~4.34!

u1 has the following form:

u15P1eit1c.c., ~4.35!

where with the aid ofL in Eq. ~3.4!
1-9
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LP15etA. ~4.36!

Therefore the proto-RG equation is

S d2

dt2
12i

d

dtD A5etA. ~4.37!

To reduce this equation to a first order equation, we mus
slightly careful, becausedA/dt andd2A/dt2 are both of or-
der e. This can be seen as follows. Obviously from E
~4.37! dA/dt5O@e#. Differentiating Eq. ~4.37! once, we
obtain

S d3

dt3
12i

d2

dt2
D A5eS A1t

dA

dt D . ~4.38!

The right hand side is still of ordere, so d2A/dt25O@e#.
Differentiating Eq.~4.38! once more, we obtain

S d4

dt4
12i

d3

dt3
D A5eS 2

dA

dt
1t

d2A

dt2
D . ~4.39!

Therefore we conclude thatd3A/dt3 or higher order deriva-
tives are higher order thane. Hence from Eq.~4.38! we
obtain

d2A

dt2
52

i

2
eA. ~4.40!

Using this in Eq.~4.37!, we obtain to ordere

dA

dt
52

i

2
teA1

e

4
A. ~4.41!

This is indeed the correct RG equation to ordere obtained by
a more explicit conventional procedure explained in Ref.@8#.
The reader may say that the above calculation is poss
because the time-dependent factor (t in this case! is simple;
if it is a general time-dependent functionf (t), then the pro-
cedure would not work. A short reply to this criticism is:
approaches similar to the above do not work, then RG p
cedures using explicit singular terms are hopelessly com
cated~this means the conventional singular perturbations
hopeless as well!. If some higher order derivatives vanis
identically ~i.e., if f is a polynomial!, the procedure works
Otherwise, there is no mechanical way. That is, there is
mechanical way to obtain the global behavior.

V. BEYOND ALL ORDERS

As we have seen in the preceding section, our RG met
works to all orders. However, it is clear that the meth
explained there cannot give the other solution of Eq.~4.1!
whose leading order behavior ise2t/e. To obtain such a term
is called the problem beyond all orders. As we have s
above, the RG approach is just to sum the secular terms
linear problems, so that we discuss only the summation
this section and will not explicitly mention RG.

Let us reconsider Eq.~4.1! with the aid of the Laplace
04610
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transformation. Let us write the Laplace transform ofyn to
be Yn . Then, formally Eq.~4.3! reads

~s11!Yn52s2Yn21 . ~5.1!

It is easy to solve this iteratively as

Yn5S 2s2

11sD
n

Y0 . ~5.2!

If we sum all these terms, we get

Y5Y0

1

11es2/~11s!
5

~11s!Y0

11s1es2
. ~5.3!

Thus we can recover the original differential Eq.~4.1!, so
that obviously we can recover the transcendental beha
.e2t/e. The reason why we could not get such a term in
preceding section was simply that we chose the initial c
dition such thaty0(0)5A andy08(0)52A ~as is demanded
by the zeroth order equation!. This condition exactly re-
moves the contribution from the zero of the denominator
Eq. ~5.3! that behaves like 1/e. This is also the only condi-
tion we can impose consistently to the first order differen
equation.

In short, the full information about the transcenden
terms is still retained in the perturbative result itself, but w
~so to speak, meticulously! discard it through imposing a
special auxiliary condition in the usual singular perturbati
approach. Therefore if we stop discarding the full inform
tion, or if we try to retain the extra information needed f
the transcendental terms, we should be able to get the re
even beyond all orders from perturbative results.

One ~and the conventional! way to retain two auxiliary
conditions is to scale the variable ast5es to magnify the
boundary layer. Then, the perturbation term becomes n
singular, and we obtained the transcendental terms as w
However, here we avoid this approach and keep the sing
nature of the perturbation in the most naive way. The rea
may well say that practically the conventional method
simple and standard enough, so there is no point to giv
‘‘nonscaling’’ approach. First of all, we wish to show that
is untrue that the scaling of the variable is necessary to
the result beyond all orders contrary to the general bel
The main aim of this section is to point out:

~i! The main difficulty of the naive perturbation approa
is solely due to its incapability of accommodating all th
auxiliary conditions for the original problem~due to the de-
crease of the order of the differential equation!. If we can
overcome this difficulty, we can recover even the ‘‘beyo
all orders’’ results perturbatively without rescaling the va
able.

~ii ! The resultant approach has the same structure m
ematically as the so-called exact WKB theory, the only r
orous singular perturbation theory beyond all orders@20#.

Let us consider the simplest example with a singular
havior:
1-10
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e
dy

dt
1y50. ~5.4!

Its general solution isy5Ae2t/e. If we perform the expan-
sion y5y01ey11 . . . , then we obtainy50, which is con-
sistent with the asymptotic expansion of the exact solution
powers ofe. The problem is that the zeroth order equation
not even an ODE in this case, so that no initial condition c
be imposed.

The most natural approach to rescue the situation se
to be as follows. An initial condition may be imposed wi
the aid of the delta function as

e
dy

dt
1y5ad~ t ! ~5.5!

with a homogeneous initial conditiony(0)50. If the initial
condition for the original problem isy(0)5A, thena5eA,
so that if we treat the delta function as an ordinary functi
then one might observe that when we drop the derivative,
should drop the delta function term as well. However, o
experience with the Laplace transformation tells us that
should retain the delta function term to the zeroth order~that
is, e times d or its derivatives must be treated in a spec
way!.

The easiest way to solve Eq.~5.5! is with the aid of the
Laplace transformation, but to explore the possibility
studying nonconstant coefficient equations, we avoid this
proach. The zeroth order equation reads

y05ad~ t !. ~5.6!

The perturbation equations read

yn52
dyn21

dt
. ~5.7!

Hence we obtain

yn5aS 2
d

dtD
n

d~ t !, ~5.8!

so that

y5 (
n50

`

aS 2e
d

dtD
n

d~ t !. ~5.9!

To sum this highly singular series, we use the Borel summ
tion method. Let

B~s![ (
n50

`

a
1

n! S 2s
d

dtD
n

d~ t !5ad~ t2s!. ~5.10!

Then, the Borel summation result reads

y5
1

eE0

`

B~s!e2s/e ds5
a

e
e2t/e. ~5.11!

Thus we have obtained the result beyond all orders from
‘‘naive’’ perturbative calculation@19#.
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If the equation is a second order equation, then the ini
condition fory0(0) andy08(0) may be imposed by an inho
mogeneous term consisting of a linear combination ofd(t)
andd8(t) with homogeneous initial conditions ony0.

From the above calculations, it is tempting to conjectu
that perturbative calculations, appropriately organized,
always give us all the information about the original equ
tion. Consequently, the results beyond all orders can be
tained perturbatively. A crucial ingredient is to retain th
degrees of freedom~flexibility of accommodating suffi-
ciently many auxiliary conditions! in the original problem in
the perturbative procedure.

We wish to point out that the essence of the above ca
lation, the formal expansion1 Borel transformation with
respect to the expansion parameter, is the same as that o
so-called exact WKB analysis@20#.

VI. GENERAL CONSIDERATION ON PARTIAL
DIFFERENTIAL EQUATIONS

In the case of ODE’s, the secular terms due to the per
bation seem unambiguously identifiable, and they are obt
able by the Lagrange method. The operator in the proto-
equation~and eventually that in the RG equation! is chosen
to remove these divergences. If we inspect the same pr
dure for PDE’s, we realize that the situation is more comp
cated, because the solution to the inhomogeneous equati
generally not unique.

For the illustration sake, let us study a simple example

S ]

]t
2

]2

]z2D f51, ~6.1!

for t.0 andzPR. t or 2z2/2 is a special solution, and th
general solution@21# to this equation may be obtained from
the general solution to the homogeneous diffusion equa
plus t, for example. The problem is clear: even the diverg
~or secular! terms need not be unique. If we try to remove t
~space-time! secular term, depending on the choice of o
secular solution to the inhomogeneous equation, the resu
RG equations are different, because, according to the pr
dure employed in our previous papers, the RG equatio
determined by the condition to remove the secular ter
One prototypical method was utilized in Ref.@8#, but was far
from systematic and complete. This is the reason why th
were controversies@9,12# as in the case of the Swift
Hohenberg equation@26#.

If Eq. ~6.1! is a perturbation equation, then the key step
construct the proto-RG equation should be to find an ope
tor that maps the classV of ~space and/or time! secular
functions that satisfy Eq.~6.1! to 1 ~or something known or
tractable!. Again, there may be many different operators th
can do the job. We wish to map the smallest set containingV
~hopefully itself! to a known object. We have not yet cod
fied all of the characterizations of the required map~i.e.,
differential operator!, but at least it is clear that we must loo
for the lowest order operator~‘‘antiprincipal’’ part! among
1-11
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them that mapsV to, say, 1. This is in accordance with ou
interest in the most global space-time features of the s
tion.

In any case, the crucial point is that we must deal with
set of functions, not individual secular terms, if we wish
perform renormalization-group theoretical reduction. The
fore the idea of the proto-RG approach introduced in
preceding sections, or more generally the strategy to av
explicit calculations as much as possible, becomes more
evant to PDE’s than to ODE’s. To illustrate our approa
we give several examples.

VII. EVOLUTION EQUATIONS

A. Interface dynamics

Consider the following simple semilinear parabolic equ
tion ~the time-dependent Ginzburg-Landau equation for
w4 free energy functional without conservation!:

]c

]t
5c2c31Dc. ~7.1!

It has a plane kink solutioncK ,

cK~z!5tanhS z

A2
D , ~7.2!

that describes an interface between two segregated dom
cK(z2 f ) describes a kink displaced byf in thez direction, if
f is constant. Note thatz5 f describes the interface position
If the interface is not flat, that is, iff is a nonconstant func
tion of x andy, thencK(z2 f ) is no more a solution to Eq
~7.1!. AssumingcK(z2 f ) with nonconstantf as an initial
condition of Eq.~7.1!, we wish to describe the evolution o
the system. If the deviation off from being constant is lo-
cally not great, then the time evolution of the system sho
be described by the time evolution of the interface sha
that is, in terms of the time evolution off.

We split the rhs of Eq.~7.1! into two parts as

]c

]t
5S c2c31

]2c

]z2 D 1D2c, ~7.3!

whereD2 is the Laplacian acting only on the variablesx and
y. The last term is regarded as a perturbation that beco
nonzero due to nonconstancy off. Note that its smallness i
not due to any small parameter associated with the oper
but due to the gentle dependence of the function onx andy
upon whichD2 acts~that is, due to our choice of the initia
condition!. We will not write explicitly the parameter deno
ing the smallness of the perturbation and the perturba
terms in the solution@we could writef (ex,ey) with small e
to be explicit#. Since we study only the lowest nontrivia
order, clear indication of the order is not needed. Notice t
c0[cK„z2 f (x,y)… is a solution to the unperturbed equ
tion.

Writing the deviation of the true solution fromc0 asw,

c5c01w, ~7.4!
04610
u-

a

-
e
id
el-
,

-
e

ins.

d
e,

es

or,

e

t

we get to, the lowest nontrivial order@step~1!#,

S ]

]t
2L Dw52HcK8 ~z2 f !1~¹2f !2cK9 ~z2 f !, ~7.5!

whereL is the linearized operator obtained from the spa
part of the unperturbed equation:

L5123cK
2 ~z2 f !1]z

2 . ~7.6!

H is twice the mean curvature of the interface, and¹2 is the
gradient operator acting on the functions ofx and y only.
When a wakelike disturbance is generated,w does not vary
slowly with respect to (x,y) as assumed in Eq.~7.5!. How-
ever, the disturbance does not contribute to the leading o
variation off. Notice thatcK8 (z2 f ) is the zero eigenfunction
of the operatorL ~corresponding to the Nambu-Goldston
mode!. Therefore this can be the source of the secular te
Notice further thatcK9 is orthogonal to this function in theL2

sense~as a function ofz).
Let us renormalize Eq.~7.4! as ~we follow the abstract

procedure at the end of Sec. III!

c~ t,r!5cK„z2 f R~t,z,x,y!…1w~ t,r!2ŵ~t,z,t,r!,
~7.7!

where the last subtraction describes the secular term iw
with the seculart dependence being replaced witht and that
of z by z ~with physical insight one can say that there is
secular dependence onz to the lowest nontrivial order, bu
we do not use this insight!; t andr may remain@and usually
do as in Eqs.~3.6! or ~3.44!#. This splitting of the secular
behavior corresponds to replacing the differential opera
as

]

]t
→ ]

]t
1

]

]t
,

]

]z
→ ]

]z
1

]

]z
~7.8!

in the construction of the proto-RG operator. The need
projection is the projection onto the subspace spanned bycK8
with respect to the scalar product of theL2 space of func-
tions of z in the present case. Equation~7.5! implies @step
~3!#

Sŵ52H, ~7.9!

or

S ]

]t
2

]2

]z2
22

]

]z

]

]zD ŵ52HcK8 ~z2 f ! ~7.10!

modulo the component orthogonal tocK8 . Applying the
proto-RG operatorS to Eq. ~7.7!, we obtain

F S ]

]t
2

]2

]z2
22

]

]z

]

]zD cK„z2 f R~t,z,x,y!…G
i

52@H~x,y,t!cK8 ~z2 f R!# i , ~7.11!
1-12
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wherei denotes the component in the null space ofL. Com-
puting this explicitly, we arrive at@step~4!#

S ]

]t
2

]2

]z2D f R~ t,z,x,y!52H~x,y,t !, ~7.12!

where we have used thatcK9 is orthogonal tocK8 . The equa-
tion in the orthogonal complement of Eq.~7.11! must also
vanish@22#. This gives the condition that] f R /]z5constant
~to this order!, so that actually, there is no second derivat
of f R in Eq. ~7.12!. Thus the outcome is equivalent to th
famous Allen-Cahn@23# equation governing the normal ve
locity of the interface. The derivation is an RG version
Kawasaki and Ohta@24#.

In the above, we have assumed that the initial deviatio
explicitly given by the nonflat interface. Instead, we m
assume that the initial deviation is given by

c5c01w11w21•••, ~7.13!

where c05cK(z2 f 0) ( f 05const) is an exact solution o
Eq. ~7.1! and w j is the j th order perturbed field. This time
the first and the second order deviations obey the follow
linearized equations:

S ]

]t
2D22L Dw150, ~7.14!

S ]

]t
2D22L Dw2523c0w1

2 , ~7.15!

whereL is given by Eq.~7.6! with a constantf 5 f 0. Note
that Eqs.~7.14! and~7.15! have secular solutions of the form
P(t,r)cK8 and Q(t,r)cK8 1P(t,r)2cK9 /2, respectively, where
P and Q are polynomials oft and r. Here, it is easy to see
thatP does not depend onz and]zQ is constant@16#. Let us
renormalize Eq.~7.13! up to the second order as

c~ t,r!5cK„z2 f R~t,r!…1w1~ t,r!

1w2~ t,r!2ŵ1~t,r,z!2ŵ2~t,r,z!, ~7.16!

where the last subtractions remove the secular terms inw j
with the seculart,r dependence inP(t,r) being replaced
with t,r5(j,h,z); z in cK8 andcK9 may remain. This split-
ting of the secular behavior corresponds to replacing the
ferential operators as Eq.~7.8! and

]

]r
→ ]

]r
1

]

]r
~7.17!

in the construction of the proto-RG operator. The need
projection is the projection onto the subspace spanned bycK8
with respect to the scalar product of theL2 space of func-
tions of z in the present case. Equations~7.14! and ~7.15!
imply

S~ ŵ11ŵ2!50, ~7.18!

or,
04610
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S ]

]t
2

]2

]j2
2

]2

]h2
22

]

]r
•

]

]rD (j 51

2

ŵ j50, ~7.19!

where]z
2 is omitted from the proto-RG operator since secu

terms in ŵ j are, at most, polynomials of degree one w
respect toz. Applying this modified proto-RG operator t
Eq. ~7.16! and noting Eq.~7.18!, we obtain

F S ]

]t
2

]2

]j2
2

]2

]h2
22

]

]r
•

]

]rD cK„z2 f R~t,r!…G
i

50,

~7.20!

wherei denotes the component in the null space ofL. Using
the fact thatcK9 is orthogonal tocK8 in the L2 sense~as a
function of z), we arrive at

S ]

]t
2

]2

]x2
2

]2

]y2D f R~ t,r!50. ~7.21!

This is exactly Eq.~7.12!, becauseH52(]x
21]y

2) f R .
In the previous RG approach@25# a special form of the

singular term2tHcK8 „z2 f (x,y)… was used. The rest is th
same but is maybe simpler than the derivation above.
procedure can be justifiablea posteriori, but a fair amount of
insight was required.

The merit of the RG derivation of the Allen-Cahn equ
tion may be an explicit information easily obtained from
derivation about its valid time range as discussed in R
@25#. The result should be meaningful after renormalizati
up to the time scale oftH;1. SinceH;t21/2 ~as, e.g., can
be seen from dimensional analysis!, the Allen-Cahn equation
cannot be reliable forever. Physically, this is obvious, b
cause we have ignored the displacement of the average
sition of the interface in the derivation.

B. Phase equation for spatially modulated oscillation

Let XPRn be ann-dimensional vector~describing con-
centrations ofn chemical species!. Suppose

dX

dt
5F~X!, ~7.22!

whereF is a vector-valued function, has a periodic soluti
X05X0(vt1w), where the phasew can be any function of
space determined by the initial condition. Let us conside
system that can be spatially inhomogeneous governed by
following reaction diffusion equation:

]X

]t
5F~X!1DDX. ~7.23!

We study the solution of this equation close to the spatia
uniform X0. Again as in the first procedure in the precedi
subsection, the magnitude of the last term, the perturba
term, depends on the phase functionw. We choose this func-
tion to be only gently space dependent. Let us write
1-13
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X5X01X11••• . ~7.24!

The first order term obeys

]X1

]t
5¹XF„X0~vt1w!…X11DDX0 , ~7.25!

where¹X is the gradient operator inRn. SinceX08 , where8
denotes the differentiation with respect to the phase, is a
eigenvector of the linear operator acting onX1 in Eq. ~7.25!,
the solution to this equation may be renormalized as@step
~2!#

X~ t,r!5X0„vt1wR~t,r!…1X1~ t,r!2X̂1~t,t,r!,
~7.26!

whereX̂1 is X1 with its secular term variables replaced ast
→t. From Eq.~7.25! it is obvious thatS5P]/]t, whereP is
the projection operator onto the null space of the linear
erator¹XF(X0). Therefore we have@step~3!#

F ]

]t
X̂1G

i
5D@DX0# i , ~7.27!

where@ # i denotes the projection onto the null space of
linear operator¹XF(X0). With the help of this Eq.~7.26!
gives the following proto-RG equation@step~4!#

F ]

]t
X0„vt1wR~t,r!…G

i
5D@DX0„vt1wR~t,r!…# i ,

~7.28!

where we have replacedw in the rhs with the renormalized
counterpart~consistent to this order!. It reads more explicitly
as

FX08
]wR

]t G
i
5D@X08DwR1X09~¹wR!2# i . ~7.29!

From this we obtain@step~5!#

]wR

]t
5bDwR1au¹wRu2, ~7.30!

where

a5^u0•DX09&/^u0•X08&, ~7.31!

b5^u0•DX08&/^u0•X08&. ~7.32!

Here, u0 is the left null eigenfunction of¹XF(X0) @i.e.,
^u0•¹XF(X0)&50], and ^ & is the integration over@0,2p#
with respect to the phase variable. This scalar product r
izes the needed projection in the proto-RG operator. T
result is the standard phase equation.

Again as in the preceding subsection, we can assume
the unperturbedX0 is strictly spatially uniform. In this case
the first and second order terms obey
04610
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]X1

]t
5¹XF„X0~vt1w!…X11DDX1 , ~7.33!

]X2

]t
5¹XF~X0!X21DDX21~1/2!¹X

2F~X0!:X1
2 .

~7.34!

Since Eqs.~7.33! and ~7.34! have secular solutions of th
same formP(t,r)X08 and Q(t,r)X081P2(t,r)X09/2 as in the
preceding subsection, where8 denotes the differentiation
with respect to the phase, the solution to this equation m
be renormalized as

X~ t,r!5X0„vt1wR~t,r!…1X1~ t,r!1X2~ t,r!2X̂1~t,t,r!

2X̂2~t,t,r!, ~7.35!

whereX̂j is Xj with its secular term variables replaced ast
→t and r→r. From Eqs.~7.33! and ~7.34!, we obtain

S(
j 51

2

X̂j50, ~7.36!

where

S5PF ]

]t
2S ]2

]r2
12

]

]r

]

]rD DG , ~7.37!

whereP is the projection operator onto the null space of t
linear operator] t2¹XF(X0). Then, Eq.~7.35! gives the fol-
lowing proto-RG equation:

SX0„vt1wR~t,r!…50, ~7.38!

which is identical to Eq.~7.29!. The rest is the same.
In this second derivation, we have not assumed explic

that the spatial variation of the phasew is small. Instead, the
secular solutions of Eqs.~7.33! and~7.34! are chosen so tha
they are eliminated by renormalizing the phase@16#. This
choice of the secular solutions implies that small pertur
tions around the exact solutionX0 with a constant phase
yield only a small deviation from the constant phase fot
;O(1) andr;O(1). Theresultant phase Eq.~7.30! shows
that the phase deviates substantially from the constant v
for a longer time or a larger spatial scale.

C. Taniuti-Wei reductive perturbation

The original Taniuti-Wei reductive perturbation@2# ap-
plied to simple waves can be given RG reductively as f
lows. The starting equation is

]

]t
U1A~U !

]

]x
U50, ~7.39!

whereU is a vector, andA is a matrix. We assume this is
hyperbolic equation. We study a small disturbance aroun
constant solutionU0:

U5U01eU11••• . ~7.40!
1-14
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Accordingly,A is also expanded as

A~U !5A01eU1•¹UA01••• . ~7.41!

To ordere

LU150, ~7.42!

where

L[
]

]t
1A0

]

]x
, ~7.43!

and the next order is

LU252~U1•¹UA0!
]U1

]x
. ~7.44!

Equation~7.42! is essentially a wave equation. Let us assu
that the eigenvalues of the matrixA0 be real and distinct and
we rewriteA0 as( jv jRjL j in terms of its left eigenvectorL j
and right eigenvectorRj such thatL jA05v jL j , and A0Rj

5v jRj , respectively. Then the general solution to Eq.~7.42!
reads

U15(
j

hj~x2v j t !Rj . ~7.45!

Here,hj are determined by the initial condition, sohj ~initial
wave form! is modifiable~i.e., we may renormalize it!.

Since all the velocities of the simple waves~components!
are distinct, far away from the source we may ignore
interferences among these waves. Therefore let us con
only hj as a representative.U2 contains a resonant term fo
each component. Hence Eq.~7.44! reads@step~1!#

LU252hj~x2v j t !hj8~x2v j t !~Rj•¹U!A0Rj

5F„h~x2v j t !…. ~7.46!

It is obvious that a secular contribution arises fromF„h(x
2v j t)… as can be seen easily from the comoving coordina
The usual subtraction and absorption intoU1 can be done for
each component as@step~2!#

„U~ t,x!2U0…/e5hjR~t,j!Rj1e„U2~ t,x!

2Û2~t,j,x2v j t !…. ~7.47!

Projection of Eq.~7.46! onto the eigenvectorRj gives @step
~3!#

SÛ2~t,j,x2v j t ![@L j•~]t1A0]j!Û2#5@F# i ,
~7.48!

with

@F# i52hj~x2v j t !hj8~x2v j t !L j~Rj•¹U!A0Rj .
~7.49!

Hence the proto-RG equation is@step~4!#
04610
e
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S ]

]t
1v j

]

]j DhjR~t,j!1e@L j~Rj¹UA0!Rj #hjR

]

]j
hjR50,

~7.50!

This is also the RG equation for this case.
The method to construct a proto-RG operator may

summarized as follows: LetL(]x)u50 be the unperturbed
linear equation, andu0 is its solution~of our interest!. Herex
collectively denotes all the independent variables. Then, s
the differential operators as]/]x→]/]x1]/]x, introduce
the results intoL and subtract the original operator from th
to make S85L(]x1]x)2L(]x). In this procedure all the
functions appearing inL must be moved beforehand to th
left of differential operators, calculating needed derivativ
@e.g., (]/]t) f (t)→ f 8(t)1 f (t)]/]t]. Then, applyS8 to the
perturbation result with secular terms, and project the re
onto the null space ofL(]x). Finally, identifyx andx in the
result. The overall result defines the proto RG operatorS @as
exemplified in Eq.~3.45!#.

VIII. NEWELL-WHITEHEAD EQUATION
AND ITS GENERALIZATION

We consider here the two-dimensional Swift-Hohenbe
equation widely used as a simple model of the Raylei
Bénard convection@26#,

]u

]t
5eu2u32S ]2

]x2
1

]2

]y2
1k2D 2

u, ~8.1!

wheree is a control parameter or a reduced Rayleigh nu
ber, a measure of the degree of convective instability of
quiescent stateu50. For small positivee, the system exhib-
its a supercritical bifurcation. Since we wish to treateu
2u3 as a perturbative term, to be consistenteu andu3 must
be of the same order. We scaleu asAeu, and denote the new
u with the same symbol. Then, the original equation read

]u

]t
5e~u2u3!2S ]2

]x2
1

]2

]y2
1k2D 2

u. ~8.2!

We consider this on the whole plane for all positivet. As a
zeroth order solution, we choose the roll solution along thy
axis: Aeikx1c.c., whereA is a complex numerical constan
We expandu around this solution as

u5Aeikx1A* e2 ikx1eu11e2u21•••1c.c. ~8.3!

The first order correction obeys@step~1!#

]u1

]t
1S ]2

]x2
1

]2

]y2
1k2D 2

u15~123uAu2!Aeikx2A3e3ikx.

~8.4!

This is a linear PDE, so we may write the solution in t
following form @step~2!#:

u15P1~ t,r!eikx1Q1~ t,r!e3ikx, ~8.5!
1-15
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where r5(x,y). Since eikx is a null solution to the linear
operator, P1 must contain spatially secular~that is, un-
bounded or not integrable! terms.

Since

F ]

]t
1S ]2

]x2
1

]2

]y2
1k2D 2GP1eikx5~123uAu!2)Aeikx,

~8.6!

we have@step~3!#

F ]

]t
1

]4

]x4
14ik

]3

]x3
12

]2

]y2

]2

]x2

1S 24k2
]2

]x2
14ik

]2

]y2

]

]x
1

]4

]y4D GP1

[LP15~123uAu!2A. ~8.7!

Similarly, we can obtain

F ]

]t
1S ]2

]y2
1

]2

]x2
16ik

]

]x
28k2D 2GQ1[RQ152A3.

~8.8!

From this, we clearly see thatP1 can never be a constant, b
Q1 can.

The renormalized perturbation series reads

u5AR~t,r!eikx1e@P1~ t,r!2P1~t,r!#eikx

1Q1e3ikx
•••1c.c. ~8.9!

Hence the proto-RG equation reads@step~4!#

S ]

]t
1Lt,rDAR~t,r!5e~123uARu2!AR , ~8.10!

whereLt,r is L with the replacementt→t, r→r. It should
be seen easily that to obtain this result, we may follow
more abstract procedure in the preceding subsections~or as
is noted in Sec. III!.

L contains much more terms than the standard result
reduce the equation further, we must choose the way
observe the system. If we choose the order of the variable
]/]t;]2/]x2;]4/]y4;e ~i.e., t;e21, x;e21/2, and y
;e21/4), then@step~5!#

S ]

]t
24k2

]2

]x2
14ik

]2

]y2

]

]x
1

]4

]y4D AR~ t,r!

5e~123uARu2!AR , ~8.11!

the usual result. An important observation is that there is
other consistent choice if we wish to avoid a simple diffusi
equation to this order. For example, if we wish to choo
]4/]y4;]4/]y2]x2;(]/]t);e, then ]2/]x2 and ]3/]x]y2

dominate the lhs and cannot balance the ordere term on the
rhs. Therefore Eq.~8.11! is the only consistent nontrivia
result to ordere.
04610
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To obtain the next order, we need the equation for
second order term:

F ]u2

]t
1S ]2

]x2
1

]2

]y2
1k2D 2Gu2

5$~126uAu2!P123A2P1* 23A* 2Q1%e
ikx

1$~126uAu2!Q123A2P1%e
3ikx23A2Q1e5ikx.

~8.12!

The general form of the solution~the special solution! is
given by

u25P2~ t,r!eikx1Q2~ t,r!e3ikx1R2e5ikx. ~8.13!

Here,P2 is obviously secular.Q2 is also secular because th
inhomogeneous term withe3ikx is already secular in Eq
~8.12!.

LP25~126uAu2!P123A2P1* 23A* 2Q1 , ~8.14!

but note that we need only the last term, becauseP1 is not
constant. From Eq.~8.8! we obtain

Q152
A3

64k4
. ~8.15!

Hence the proto-RG equation reads

LAR5e~123uARu2!AR1e2
3

64k4
uARu4AR . ~8.16!

Here, we have used the fact that the terms containinge3ikx,
e5ikx, etc., may be ignored, and that we may ignore all
terms explicitly dependent on space time due to the spa
time translational symmetry of the system@27#. This is actu-
ally the RG equation to ordere2.

Notice that Eq.~8.10! is the equation derived by Graham
@9#. It is now clear that it is not a consistent equation to ord
e. Up to ordere3/2, we can make Eq.~8.10! consistent by
dropping]4/]x4 in L @28#. If we wish to retain all the dif-
ferential operators in Eq.~8.10!, we need an additional inho
mogeneous term as in Eq.~8.16!.

Let us apply the proto-RG operator scheme to the sec
order result. Its merit is that we need not assume the fo
such as Eqs.~8.5! or ~8.13!. From Eq.~8.12! the operator
reads

S[PH ]

]t
1F S ]

]j
1

]

]xD 2

1S ]

]h
1

]

]yD 2

1k2G2

2S ]2

]x2
1

]2

]y2
1k2D 2J , ~8.17!

whereP is the projection operator extracting the coefficie
of eikx ~subsequent replacement of the variables such ax
→j is implied!.
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Sû25@~126uAu2!u12~3A2e2ikx1A* 2e22ikx!u1# i , ~8.18!

where@ # i means the coefficient ofeikx ~and then the inde-
pendent variables are all replaced accordingly!. Applying the
proto-RG operator to the renormalized perturbation, we h

H ]

]t
1F S ]

]j
1

]

]xD 2

1S ]

]h
1

]

]yD 2

1k2G2

2S ]2

]x2
1

]2

]y2
1k2D 2J AR~t,r!eikx5••• . ~8.19!

We immediately see this to be equal toeikx(]/]t1Lt,r)AR
5•••. We need the nonsecular terms inu1 to write the right
hand side of Eq.~8.18! explicitly. We must look into the
detail somewhat. Equation~8.4! tells us that~i! the term
proportional toe6 ikx is secular, and~ii ! the term proportional
to e63ikx is nonsecular, so we look for the term of the for
Q1e63ikx. This gives 64k4QA152A3 ~or 2A* 3). Hence the
term proportional toeikx in Eq. ~8.18! reads13k4AuAu4/64.
Therefore the result agrees with the one already obtaine

IX. CONCLUDING REMARKS

The key element of singular perturbation is to separate
global systematic effects of perturbation. If we can der
equations governing these effects, then the most impor
results of singular perturbation can be obtained. These e
tions are reduced equations such as slow-motion equa
derived traditionally by reductive perturbation method
Renormalization-group equations in our approach are
equations governing the slow changes of the parameters
are integration constants of unperturbed problems. Thi
why the RG approach naturally gives the slow motion eq
tion and can reproduce results of the so-called reductive
turbations.

If the equation of motion is known of the parameters th
are slowly modified by the secular effects of perturbatio
the global~e.g., long term! behavior of the perturbed syste
is completely known. Therefore reductive perturbation
conceptually the key element of singular perturbation. In t
paper we have shown how to directly obtain RG equati
~i.e., the results of reductive perturbations! without knowing
explicit singular perturbation results. Consequently, red
tive perturbation~realized by RG methods! has become the
key, not only in principle but in practice, to singular pertu
bation. Besides we wish to point out that the RG equat
facilitates rigorous error bounds@6#.

The reader might ask how general the reductive RG
For example, in the boundary layer type problems reduc
perturbation is seldom mentioned. In our RG approa
boundary layer type problems are solved without match
from the inner expansion@8#. Therefore these problems a
equivalent to problems of long term asymptotics. Thus
ductive perturbation becomes meaningful even for bound
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layer problems in our approach. Therefore if we use the
ditional terminologies, we conclude that reductive perturb
tion is the key to singular perturbation.

In this paper, we have largely freed the RG theoreti
reduction from explicit perturbation results with the aid
the proto-RG equation. For example, to the lowest nontriv
order, that is, to the order many famous phenomenolog
equations are obtained, we do not need any explicit res
The traditional reductive perturbation already has this f
ture, so this may not be surprising. Now we can combine
advantage and the advantages of our RG procedures i
trated in Ref.@8#. As is explained in Ref.@6#, reductive per-
turbation sets up a function space~usually anL2 space! to
solve a given problem and the condition to force the solut
into this space~the solvability condition! gives the reduced
equation. In contrast, the reductive RG constructs a solu
in a much wider function space, and then later trims
solution by renormalization to fit in a certain convention
function space. Therefore reductive RG is conceptually m
natural~less constrained!, and is expected to be more vers
tile. However, we have not been able to make any relev
mathematical statement, because the general idea of d
functional analysis without setting up function spaces is
mote from the current functional analytic practice.

RG, especially the field theoretical RG, is a method
extract structurally stable results against alteration of mic
scopic details. As has been clearly demonstrated in Ref.@29#
or summarized in Ref.@6#, the mathematical structure of th
perturbative RG applied to differential equations and t
applied to field theory are identical. Since asymptotic ana
sis is a method to discard ‘‘nonasymptotic details
asymptotic analysis is almost tautologically a pursuit
structural stability in a certain sense. What sort of structu
stability we should pursue depends on the problem. T
analogy between the field theoretical RG and study of lo
time behavior has told us that to extract stable featu
against perturbing initial conditions~or short time behaviors!
is the asymptotic analysis of long time behavior. Our sta
tical mechanical RG experience strongly suggests that all
asymptotic analyses can be cast into the RG theoretical fo
This is the reason that we feel the RG approach is m
more general and more powerful than we have already ex
rienced. It is desirable to demonstrate its generality theor
cally, not with various examples.
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