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It has been known for some time that singular perturbation and reductive perturbation can be unified from
the renormalization-grougRG) theoretical point of view. However, renormalization-group approaches to
singularly perturbed problems require explicit perturbation results, so they could be complicated practically.
The approach proposed in this paper has considerably eliminated the need for explicit perturbation results,
making the RG approach simpler than many conventional singular perturbation approaches. Consequently, we
may assert that reductive extraction of global features of the problem is the essence of singular perturbation

methods.
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[. INTRODUCTION whether differential operators with different orders are con-
sistently retained in the derived equation.
It has been realized for some timdl] that As can be seen from Graham’s paper, Sasa’'s pd3y

renormalization-group equations associated with the fieldr Ref.[8], it appears that we can accomplish by the RG
theoretical renormalization-group (RG) methods reduction the same goal the conventional reductive perturba-
[Stickelberg-PetermaitrGell-Mann-Low RG] can be inter-  tion can achieve. However, the RG reduction seems to be
preted as slow motion equations, amplitude equations, and snore demanding in the actual calculation than the conven-
forth. These equations have been traditionally derived withional reductive perturbatiof3], because the former seems
the aid of the so-called reductive perturbation thd@3]. It to require explicit functional forms of secular terms. Since
is true that all the famous named equations, such as the Buwe are often interested in deriving the reduced equations,
gers equation, the Kuramoto-Sivashinsky equation, thend not in their explicit solutions, the RG reduction so far
Boltzmann equatiof4], the nonlinear Schdinger equation, being practiced1,8] is methodologically awkward.
etc., can be interpreted as RG equations. The purpose of the present paper is to free the RG theo-
Suppose a spatially extended system exhibits a state; ittical reduction from the necessity of explicit secular terms
need not be simple, but practically it is often a uniform, or aas much as possible, and to stress the significance of system
space-time periodic state. We add to the system a perturbaeduction in singular perturbation in general. The conven-
tion, e.g., some nonlinear terms, dissipative terms, etc. Théonal reductive perturbations do not require explicit pertur-
system is usually not structurally stable against such pertumsation results. This advantageous feature can now be com-
bations, so that perturbation results are, if computed naivelyhined with advantages of the RG approach demonstrated in
plagued by singularitieésecular terms It has been recog- Ref.[8]. For example, to the lowest nontrivial order, that is,
nized that these singularities in the naive perturbation thecto the order usual calculations are performed, our reductive
ries can be renormalized away by the modificatioenor- RG method is probably the simplest reduction method. As
malization) of the parameters in the unperturbed state{8] this paper largely consists of demonstrations with ex-
(amplitude, phase, ejc[5—-7] and the results agree with or amples; it is still hard to assert anything extremely general,
are sometimegnumerically better than those traditionally but the approach described in this paper can handle the ex-
computed with the aid of singular perturbation methf@ls  amples in Ref[8] that already cover many representative
The modified parameters are governed by the RG equatiorexamples of classic singular perturbation problems.
that turn out to be, e.g., large-scale slow-motion equations In Sec. Il, details of the second order standard RG pertur-
(reduced equationgoften the famous named equatipriset  bative calculation are supplied for the Rayleigh equation to
us call the method to obtain space-time large scale equatiomsotivate the reductive RG theory proposed in this paper. The
as RG equations thRG theoretical reductiotfor thereduc-  practically oriented reader can skip this section. In Sec. lIl,
tive RG method our improved method for autonomous ordinary differential
Graham[9] has utilized this RG theoretical reduction to equations(ODE’s) is explained. The method introduces a
derive the isotropic Newell-Whitehead equatift0] pro-  device called the proto-RG equation that can be obtained
posed by Gunaratnet al. [11]. The derivation was ques- almost by inspection. Its reduction to the standard RG equa-
tioned by Matsuba and Nozakl2]: while the derivation is tion is, when it can be obtained by our conventional RG
based on explicit elimination of secular terms, it is not clearmethod, a purely mechanical calculation much easier than
whether all of the secular terms are consistently removed anelxplicitly obtaining the secular terms. In Sec. IV, the RG
reduction to all orders is performed for linear ODE'’s. In Sec.
V, we briefly discuss “beyond all orders.” We demonstrate
*Permanent address. that renormalized perturbation series in principle can contain
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all the information about the original system, so that such a3he right hand sidérhs) of Eq. (2.5 need not be computed

e~ Y€ can be obtained from the power series expansioa in in detail, but we must keep the resonant and unbounded
In Sec. VI, we note some important features of partial dif-terms. Thus the rhs of E¢2.5 reads

ferential equation$PDE’s). In Sec. VI, as the simplest ap-
plication of reductive RG to PDE’s, we discuss the reduction 1
of some examples of evolution equations. In Sec. VIII, the 2
reduction of the Swift-Hohenberg equation is revisited to the
second order. In Sec. IX concluding remarks are given.

(1-2|AP{A(L—|A]) +itA(1—[A]?)}e"

1 1 .
+ §A|A|4e"+ §|A|2{A(1— |A|2)—iA(1—|A]?)t}e"

Il. STANDARD RG PERTURBATION REVISITED

i )
COA3/1 | A2\ a3t
To understand the RG reduction scheme and to under- + 2A (1-[AP)te™ +cc. (2.9

stand the merit of the streamlined version explained in this

paper, or at least to motivate the idea, it is advantageous tBrom this the secular term@dicated by |s) in y, read
have some experience of the RG approach to the singular

perturbation. Therefore we give nontrivial details of an ex- 1 2o U [ ) )

ample whose final result has already been published in Ref. [VZ]S_EA(1_|A| ) e T §A(1_|A| )(1-3[A[%)
[8]. For those who wish to know the practical aspect of the
proposed method in this paper, the first few paragraphs of the t? ot w1 4 it
next section should be a good starting pginith reference EJ’ 4 et EAW te

to the formulas in this section up to Eq&.6) and(2.11)].

The example we discuss is the Rayleigh equation:

i )
- EA?’(l— |A]?)tedt +c.c. (2.10
d?y dy 1/dy\?
a2 YT 1‘5(&) :

We expand the solution as

21 The basic strategy of renormalization of secular terms is
to split the secular time dependence such?ds the prefac-
tors of the exponential terms #5= (t>— 72) + 72, and absorb
72 into the renormalization constagtof the free parameter

(2.2 in the solution(for the present exampla is the parameter
we can choose freely by choosing an appropriate initial con-

dition; note that the renormalization procedure does not nec-

essarily imply the time shift—t— 7).

y=Yotey;+ e’y

These expansion coefficients obey the following equations:

42 We introduce the renormalized amplitudky as A
FjL 1) Yo=0, (2.3  =ZAr. We expandZ in powers ofe and write
A=AR(1+€eZ,+ €Z,+---). (2.1

d? dy, 1/dyp\*

-1 ylz___(_) , (2.9 The equation for the renormalized amplitude should be the

dt? dt 31 dt amplitude equation

d? ‘1 _dy1 1 dyo)2 5 d_A:() (2.12

ae )Y et |t et ) 29 dr

From this to ordere’> we obtain the renormalization-group

Let us write the solution to Eq2.3) as .
equation

— it * it
yo=Ae'+A*e™", (2.6) dAq dz, dz, dz,
——=—€Ag| — —€Z;—+e——|. (2.13
whereA is a complex constant. Equatid®.4) reads dr dr dr dr

i Thus we have only to determine the renormalization con-
y1=iA(1—|A]?)e'+ A%t +cc., (2.7  Stant.
3 Z is determined to absorb the powersobeparated out
from the seculat dependences in the bare perturbation result
where c.c. denotes the complex conjugate terms. We ne€@r y. The first order is easy to obtain from EQ.8) as
not worry about the initial condition for this equation, so we
have only to make a special solution

d2
—+1
dt?

-
Zl+(1—|AR|2)§=0. (2.14

1 . i .
y,==te'A(1—|A]?)— ﬁA3e3“+c.c. (2.9

2 To order unity this givegnote thatd Az/dr is of ordere)
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dz, 1 , which the WKB method is applicabldi.e., d?u/ds?
i |ARl?), (219  =Q(s)u]. This sort of difficulty is pointed out in Ref17]
with a seemingly benign

so that the renormalization-group equation to oredeeads

2
[cf. Eq.(2.13)] dy dy
e +Edt +y=0. (2.20
dAR _ € 2
dr EAR(l_ |ARl%).- (2.19 This equation needs some care about the initial conditions of

approximate solutions, if we wish to obtain the RG equation

The second order singular terms contain terms proporto higher order. Thus we need some insight about the solu-
tional tote", t?e", andte®" (and their complex conjugates tion. Furthermore, the following counterexample due to Ei
The singular terms containirg}' are totally removed by,  and Kuwamura is quoted also in R¢L7]:
just determined as Ed2.14). If we wish to compute higher
order results, then we must deal wigi", e, etc. The dy
secular terms containing these exponential factbence- dt
forth callednonresonant secular termsre all removed by
the results for the renormalization constant obtainableannot easily be solved by the naive subtraction scheme with
through lower order calculations as in this céfee example, the aid of the perturbative expansion in powerseof

=—€e’y+ey? (2.21)

to the second ordei, is not needed, but onlZ,; as seen All these difficulties are, according to our current view,
abova. This tells us that if we wish to determire we have due to the fact that we construct solutions and then derive
only to study secular terms containieg't, which we will ~ coarse-grained equations. The step to construct perturbative
henceforth call theesonant secular terms solutions becomes, so to speak, a bottleneck between the

To remove the resonant secular terms to orderwe  original equation and the final slow motion equation. The
must requirg 14] only way to overcome the difficulties pointed out in Ref7]

seems to maximally avoid explicit calculations. This be-
T ) o T 4 i 4 comes especially important for PDE due to the reason ex-
Zy=g (1= |ARID) (1= 3[Ar*) + i (1~ [Arl") + 76lArl*".  plained in Sec. VI. The chief aim of this paper is to provide
(2.17 @ RG means that is maximally abstragtorder to make it
more practical and convenient than it is now.
To obtain the amplitude equation we need the derivative
of Z, with respect tor to ordere: lIl. PROTO-RENORMALIZATION-GROUP
EQUATIONS—INTRODUCTION

2

le 1 T
g 5(1—|AR|2)+€§|AR|2(1—|AR|2), (2.18 In order to devise a much simpler method to obtain the
renormalization-group equation, we wish to make the stan-

where Eq.(2.16 has been used. Putting the results so fardard procedure in the preceding section as abstimgticit)
obtained into Eq.2.13, we see total cancellation of the S possiblelHowever, this section may be read largely with-

terms proportional tar, and obtain out' referring to the preceding section 'e>.<(_:ept for t_he pertur-
bation Egs.(2.4) and (2.5 and the definition ofZ; in Eq.
dAR 1 o ol . (2.11).] _ _
4 - GEAR(l_lAR| )—€ 1_6AR(2_ |ARlY). Due to the structure of Ed2.4) its solution has the fol-

2.19 lowing structure:

— it 3it
This is equivalent to the RG equation already published in y1=Pe"+ Qe +cc. (3.

Ref. [8]. . . . .
. . By inspection we see th#tt; = P,(t,A) is a first degree poly-
Clpsely looking at thg standard RG procedure, we .nOt'CenomiaI int, andQ,=Q,(t,A) is a constant. Here, their de-
that (i) only resonant singular terms have to be considered

- ) pendence o is explicitly denoted. As seen from ER.4)
lp:)lust]e dafnodr Itir;aetg:)té?;gli%hest ordezy, has only to be com- they obey the following equations:

With these observations, the procedure of the standard L,P,=iA(1—|A[2), (3.2
RG may be somewhat simplified, but still we need almost
explicit secular terms. Hence the RG method, although it 1
works and is often simpler than many standard techniques, is RtQ1=§iA3, 3.3
still an inelegant procedure.

The above calculation suggests, as emphasized in Re\rvhere
[8], that we do not need any insight as to the solution we

wish to compute and, consequently, very mechanical proce- 42 d
dures suffice. However, even for linear ODE’s, this is not Li=—+2i-, (3.9
quite true, if we do not convert it into the standard form to dt? dt
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d2 d cism, but indicates the freedom of choice in reduction. Its
Ry=— +6i &—8. (3.5  choice is not really a concern of a reduction scheme.

dt Thus the strategy to compute the ordesingular pertur-
bation result is to write down the proto-RG equation. This
equation simply gives the RG E¢B.9), and the renormal-
ized perturbation result

The renormalized perturbation result can be written as

V(O =Ar(r)e" + e[Pi[LAR(D)] = Pi[ 7. Ar(D)]}e" + -
(3.6) y(t)=Ag(t)e' + eQ,e, (3.10

Here, P, is the secular part oP; (actually P,=P, if P,
does not have the constant term; this is the usual choice
P, as well as ours Since we wish to go to higher order
calculations laterA’s in P, are replaced witiAg . However,
to this lowest nontrivial order, we may identifg with A.
Also we ignore the nonsecular terms. Let be the same
operator ad ; with t being replaced by. Then, with the aid
of Eq. (3.2,

(yyhere Eq(3.3) or —8Q;= iA?F}/3 gives all we want, because
we knowQ; is a constant.

Instead of calculatingly/d7=0, calculatingL ,y=0 is
practically the proto-RG method. The basic idea is that we
should use the information of the system under study cap-
tured in the secular term instead of using a generic method to
remove the secular term@ctually, differentiation with re-
spect tor does not always wodk Can we use the technique
to obtain higher order results in a similar fashion without any
explicit calculation? As we will see in the next section the
answer is yes to all orders for linear ODE’s. For nonlinear
ODE'’s, we need slightly more information than the func-
tional forms of the solutions. Still, as is illustrated below, the
Ar(7)=€iAg(1—|Ag[?). (3.9 calculation is far easier than most singular perturbation
methods and than our previous RG approach that is already

simpler than most singular perturbation methods. Equation
Inspecting this equation, we realize that differentiation(2.5) reads

with respect tor raises the power of. Therefore, to ordee,

we may discard the second order derivative: changing the
variable from7 to t, we obtain the renormalization-group
equation to ordee:

0=L,y=[L,Ag—L,Py(7,Ap]e", (3.7)
or

d2
E-ﬁ-ZIm

2
F+1)y2={<1—2|A|2>(iP1+F>1>+<3i<21+<'31>A*2

+(—iPt+P})AZ et +{(iP,+P;)A?

2 eAr(1—IAdD) (3.9
—, — /€ - . . .
de 27T OF +3i(1-2|AP)Q e
For this reason, we call Eq3.8) a proto-RG equation +(3iQ;+Q)A%% + ¢ c. (3.12

roughly speaking, a proto-RG equation is an equation that

can be obtained by applying the “simplest” operator to thetherefore its solution has the following form:
renormalized perturbation series to eliminate the general
form of the subtraction terms in the series. As we see here,
from this equation we can easily obtain the RG equation
algebraically. The most important observation is that to the
lowest nontrivial order, we do not need any explicit result.

As we will see later this is a useful property for reducingis a polynomial time't that is in resonance with the differ-

PDE'’s. X . . .
Although we say that in our RG approach we can obtainem'al operator on the left hand side of Eg.11). SinceP; is

the equation without any prior knowledge about the systerrf[iiegree OPQP_Z(T) ”_’“St be a secontzi[ degrtlae ;t)olynobm|al. Th"?‘t
or its solution, we have used implicitly thAk is of order 1. erm containindQ), is a nonresonant secular term, because |

Therefore the reader might claim that we need some prio?S secular but does not contain the resonant faetof. The

knowledge or requirement to derive the RG equation fronPecUlar nature o, is due to the appearance i together

. 3|t . . . . .
the corresponding proto-RG equation. When we reduce &”th e~ the right hand side O.f Eq3.1D. S, is not sin-
system, we must specify what sort of solution we wish togular(ls a constant In any case, in order to note these facts,

study. If we are interested itor expect a small solution of W€ need only inspections. Putting B§.12 into Eq. (3.11),

order e, we should obtain a different equatioe., a differ- € see

ent RG equationfrom the proto-RG equation that allows ] )

such a solution. If we could obtain such an RG equation, we LPo=(1—2|A|?)(iP1+P;)+(3iQ;+Q)A*2

may conclude that indeed such a global solution is allowed ) .

by the original system. If we fail, it implies that there is no +(—iPT +P7)A% (3.13
consistent long time behavior for which the solution behaves

as expected. Thus the criticism above is not really a criti-So far no explicit solution has been required at all.

yo=P,(t,A)et+ Q,(t,A)edt+S,(t,A)e%! +c.c.
(3.12

The term containing?, is a resonant secular term, because it
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Our main assertion in this section is the following. The — Py(7,AR) ]ARZ,+[ P} (t,AR) — Pi(7,AR) ]ARZ,
general form of the proto-RG equatidior weakly nonlinear
oscillators reads 1 Y ,

+5[Pi(t,AR) — P1(7.AR)[(ARZy)? €+ -

L, Ag=e€L P(7,AR) + €L Py(t,AR) + -, (3.14 (3.18

Notice that if we putt=r, then this reduces to/(t)
=Ag(t)e" as should be, because we have not written non-
resonant terms explicitly.

Notice that Eq(3.17) is the order by order expression of

where on the right hand side, does not act o\ (i.e., Ag

is treated as a constant Wh(fh(r,AR) are differentiated
with respect tor), and all the explicitlyr dependent terms
must be ignored from the resuhy settingr=0 after differ-
entiation. As we will see, the explicit expression of this
formula can be obtained almost without any actual calcula- A—Ag(7)+P(7,A)=0, (3.19
tion.

Let us demonstrate E¢3.14 (including the prescription and Eq.(3.18) is the e expansion result of
described below )t Our starting point is a general renormal-

ization procedure, although the result we need is very simple. y(t)=Ag(7)e'+[P(t,A)—P(7,A)Je"+c.c. (3.20

If we keep only the resonant secular terpd$], the naive

perturbation result reads as expected from consistency. Applyihg to this equation,
we obtain

y(t)=A€e+ eP(t,A)e'l+ 2P,(t,A) et + e3P4(1,A) e't
L, Ar(T)=L,P(7,A). 3.2
+...4+c.c. (3.195 R(7) (m.A) 321
After calculating the right hand side, we replagewith
Agr(7)Z. Intuitively speaking, the amplitude equation for an
autonomous equation should be autonomous, so the right

Let us introduce the renormalizédas Eq.(2.11). Then, Eq.
(3.15 can be written as

_ i i hand side of this equation should not dependraxplicitly.

— + + 2 + ... It_;’_ it

YO=Ar(1t €2yt €2 Je'+ Pyt Ag)e We can simply use this fact and set0 in the right hand
+ e[ (Py(t,AR) + P1(t,AR)ARZ,) Je™ side.Z=1 if we setr=0. Thus we have shown E¢3.14

(including the prescription described thgre
Let us demonstrate that for autonomous problems the
proto-RG equatiortand consequently the RG equationust
be autonomous. That ik,. Ag does not depend onexplic-
P! (t, AR)AZ, + EP”(t AR)(ARZ)? | e+ c.c itly. Physically, this is natural, because the long term behav-
BHORITFRE2 T o T IRATREL o ior of an autonomous equation should also be autonomous.
After renormalization, the perturbative result may be written
(3.1
order by order as

+€3| P3(t,Ag) + P5(t,AR) ARZ;

where partial differentiation with respect #y is denoted

— it
by ". The renormalization constant is determined order by y()=Ag(t)e"+F(t) +c.c, 322
order as . . .
whereF (t) contains higher frequency terriswe regardAg
ARZ,+P1(7,AR) =0, to be constant, i.e., if we ignore the very low frequency be-
havior = secular behavior oAg(t), thenF(t) does not con-
ARZy+ Po(7,AR) + P} (7,AR)ARZ,=0, tain any lower frequency terms thai?"]. If we introduce

this equation into the original equation, we get
ArZ3+ P3(7,AR) + Py(7,AR)ArZ, + P1(7,AR)ARZ, N
L [LiAR(D]e" +F (1) =eN(y (1)), (3.23
' ” 2_
+P1LARIARZ,+ 5 Pi(7.AR) (ARZ)"=0. whereN is the nonlinear term in the original equation, and
(3.17 F=LF. Since the original equation is autonomous, even if
' we shiftt—t+ 7, this equation continues to hold. Note that

From this, incidentally, we see that the procedure can b€ right hand side does not depend on time explicitly. Hence
continued order by order indefinitely. Putting these into Eqhe same must be true for the left hand side. Now, we shift

(3.16), we obtain the renormalized perturbation series time ast—t+2a. The functional forms oL Ag(t)e"* and
_ _ F(t) are order by order invariant under this shift as seen
y(t)=Age" + e[ P1(t,AR) — P1(7,AR) Je" + €2{Py(t,AR) from their way of construction. Thereforg,Ag(t), which
, , it contains lower frequency behaviors, must not depend on
- PZ( TvAR) +[P1(t1AR) - Pl(TaAR)]ARZl}e exp||c|t|y
Now, let us return to a practicdbr our recommended
+ €3| P5(t,Ag) — P3(7,AR) +[P5(t,AR) second order calculation for the Rayleigh equation. We have
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already obtained. ,P, as Eq.(3.2). To calculate the second
order term we use Eq3.13 with t being replaced by

L. Pa(7,Ag)=(1—2|A[?)(iP1+P1)+(3iQ1+ Q) A*2
(3.29

SettingA= Ay and ignoring the explicitly--dependent terms
on the right hand side of Eq3.24), we can obtain the cor-
responding term in Eq3.14). Since we know thaP; is of

first degred P,(0)=0], and thatQ, is a constant, we obtain

+(—iP%+P})AZ

L.Po(7,AR) = (1—2|Ag|?) P+ 3iQ,A%?+ P AZ.
(3.25

We need

.1 , i
PlZEA(1_|A| ), Q]_:__A y

>4 (3.26

which can be read off from Eq$3.2) and(3.3) immediately.

With this minimal explicit result, we can write down the

proto-RG equation to ordes as

d2
AR:ifAR(1_|AR|2)

+2'd
ae Cldt

1 1
e 3 IAcl At 5 Ad(L- A

(3.27

PHYSICAL REVIEW E 63 046101

(5) Reduce the proto-RG equation to the RG equation.

In this paper, we emphasize the mechanical nature of our
procedure, so we adhere as much as possible to these steps
[step(2) may be implicit, or may be merged into st€p)].

An important observation is that to the lowest nontrivial or-
der, that is often the order we need, no explicit solution is
required(as in the standard reductive perturbajion

To illustrate the proto-RG approach with a slightly differ-
ent example, let us study the van der Pol equation:

2
y o ody
dt2+y—e(1 Y)gr

(3.30
We expand ay=y,+ ey, + €%y, + .... Step(1) gives just
Eqg. (2.6). By inspection we may assunyg andy, have the
same form as the Rayleigh equatimtep(2)]. The perturba-
tion equations read

(j—;ﬂ yl=<1—y%>%, (3.30
(d—2+1 yz=(1—yé)%—2yoy1%- (3.32
dt2 dt dt
They give
LPi=iA(1—|A]?), (3.33
RQ.=—1iA3, (3.39

In this case we can solve this equation order by order foand

dAg/dt. Since

dAR €
== S A1 |Ad?)

i (3.28

LiP,=(1-2|A]*)(P,+iPy)
—iPTA2—A*2Q,—2iA%P} +2iA*2Q;.
(339

[recall that this was obtained above from the lowest order

proto-RG equation without any explicit knowledgeRf and
Q; this can of course be read off from E®.27)] to ordere,

dZAR 62
a2 7 Ar(1- |ARl?) (1 3|Agl?) +O(€%).

(3.29

Since we knowP; is proportional tat andQ, is a constant,
we need only the following formulddiscarding explicitly
t-dependent terms

(3.36

This is the end of stef8). Let us defind?; andP, with-

LP,=(1-2|A|®)P,+2iA*2Q;.

From Eq.(3.27 and this, we can obtain the RG equation toout the constant terms. The proto-RG equation has the form
order €2. Needless to say, to go to the next order we need®f Eq. (3.14. To ordere, it reads

slightly more explicit result¢for P, etc). Still, this is much

easier than the usual methods requiring detailed explicit re-

sults.

The proto-RG approach to the resonance problem may b

summarized as follows:

(1) Solve the zeroth order equation, and set up perturba-

tion equations.

(2) Write down the general form of the correctiofess,
e.g., Eq.(3.12].

(3) Find the equations for resonant secular tefass e.g.,
Eq. (3.29].

(4) Construct the proto-RG E@3.14).

L[AR: GLtPl, (337}

at is,

Ar=ieAg(1—|Agl?). (3.39

d’ +2i d
dt? ! dt
Therefore the lowest order RG equation is given by

dAg 1 ,

dat 2
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The proto-RG equation to ordef reads, according to Eq. whereP is an appropriate projection operator onto the null
(3.19, space(i.e., the operator factoring out the coefficientetfin
the present case(The subscript= 7 implies the prescrip-

d? d ' ) tion: t is replaced byr after projection. This procedure is not
@+2| gt Ar=TeAR(1— |ARl?) needed to the lowest order considered here, but if we wish to
use the operator in higher order calculations we must specify
n 62[(1—2|A|2)P1+2iA* 2Q,]. how to treatt on the right hand sidgThen,
(3.40 Spy(7.t)=iA(1—|A]?). (3.46

The remaining task is to read d#; andQ, from Eqs.(3.33  Thjs is step(3). We can use this relation to derive the
and(3.34). From the former, we read off proto-RG equation from Eq3.44) as follows. Applyings to
L Eq. (3.44), we just obtainstep(4)]
o 2
Pi=5A1-|A]%). (3.41) 2

0= Ar(7)—IAR(L—|ARl?).  (3.47)

— +2i —
From Eq.(3.34, we readQ,=iA2/8 off. This is the end of T o
step (4). To obtain the second order result, we need
d?Ag/dt? to ordere?, but this can be obtained by differen-
tiating the first order result as we did above, and the result
identical to Eq.(3.29. Hence combining these results we

In this slightly more abstract version, to construct the op-
.erator S (that could appropriately be called the proto-RG
'%perato} is the essence. How to construct it practically will
be found at the end of Sec. VII. A related mathematical

obtain discussion can be found in Sec. VI.
dAg 1 o ol 5
ot~ 2 €AR(L- |ARl?) — € g Ar(1— 2|Agl?). IV. LINEAR ODE—PROTO-RG EQUATION APPROACH
(3.42 When we wish to reduce a system, or to know the quali-

tative behavior, we need only the lowest nontrivial order
Let us conclude this section with a further abstraction. Inresult or at most the next. Therefore the proto-RG procedure
the above we assume a certain form of secular terms such &sa very powerful method. When the problem is linear, we
Eq.(3.12. Here, we do not even assume this. Let us return tezan apply the method easily to all orders. To illustrate the
the Rayleigh equation, and write its perturbation result apoint, let us consider the simplest case:

[step(2)]

. d> d
=Ae' e —+ —+ =0. .
y=A€e'+epy(t)+---+c.C. (3.43 (edtz T 1)y 0 (4.1
Here, notice that in contrast to the expression such as E(i{f
(3.1) the structure of the first order perturbation term is not
explicit asp;=P,e''+ Q,e¥". Let us introducer to denotet

appearing in the secular terms and rewritgt) asp;(,t).

That is, p, is obtained fromp, by replacingt in the secular then order by order we obtaim&0,1,2 ...,y_4=0)
term prefactors withr and discarding the terms that do not

vanish whenr is set to zerdthe so-called minimal subtrac- dy, d?y,_;

tion scheme; this procedure givé§= P,(7)e't in the above dat tYn= de2 4.3
example, but we do not need such an explicit forithen,
the renormalized perturbation series reads

we expand

y:y0+6y1+"'+6nyn+"', (42)

The unperturbed result reagg=Ae !, and the solution to

" . Eq. (4.3 can be written §=1,2,...) asy,=AP.e" !,
y=Ag(7)€"+ e[p1() —pa(7,t)]+---+c.c. (344  whereP, are polynomials determined recursively as

Introduction of = corresponds to the splitting al/dt to dP d2P, , dP,_;
d/dt+d/dr in d%/dt?+ 1. If we apply @/dt+d/dr)2+1 to d_tn:_ dt"z 2 d”t —

p, and factor oute' from the outcome, then it must be
identical to the coefficient of't on the right hand side of the
first order perturbation equation governipg This suggests , i ' ,
that it is convenient to introduce the following operator; !0 identify the secular terr®?, and P, itself. '

Using these polynomials, the naive perturbation result
a2 d d reads
d72+2d7dt>’ (3.45

Pho1 (4.9

with the initial conditionP,(0)=0. This condition allows us

SEPIT( _
y(t)=A[1+eP,(t)+ -+ €"Py(t)+---]e"t. (4.5
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Thanks to the linearity of the problem, are independent of One might say that the method is not so useful for linear
A. The secular part oP,, is P, itself because of the initial problems, since, after all, the problems are simple; the same
condition. The renormalization oA can be written asA results can be obtained easily by, e.g., the Lie group method

=ZAg(7). Introducing this into Eq(4.5), we obtain [16]. This is very often the case. However, if the Lie group is
not acting on a simple spac& (or C), the proto-RG ap-
Y()=Ar(7)Z[1+ ePy(t)+- - +€"Py(t)+---Je". proach seems sometimes simpler. Let us demonstrate the

(4.6 point with simple examples.

. Let us first consider
If we chooset— 7 to be higher order than any power ef

then obviously d?y dy
— +(2+e) - +y=0, (4.149

Z =1+ ePy(n) 4+ PN+ (47 dt dt
That is, The decay mode of the solution depends on the sign ahd

€=0 may be understood as a bifurcation point. The unper-
Ar=A[1+€Py(7)+---+€"P(7)+---]. (4.8) turbed solution has the forma¢bt)e ", wherea andb are
constants. Therefore let us setA(t)e™ !, and write down
In other words, summing all the divergent terms may bethe equation forA. This is the proto-RG equation in this
understood as renormalization as in the naive renormalizazase:
tion we encounter in, e.g., many-body theory. This is a gen-

eral feature of linear problems. d?A dA
From Eq.(4.4) through an order by order calculation, we W: €| A- dat - (4.15
obtain
5 From this the lowest order RG equation reddkhough we

dAgr d°Ar _dAg must admit that we need no such fancy name for these equa-
——=€| — +2———Ag]|. 4.9 .
dr d2 dr tions)

Conversely, if we solve this equation recursively in powers dz_A: A 4.16

of € with the zeroth order result being constant, we can de- dt? e ’

termineP, order by order. We see that E@.9) is obtained

simply by substitutingy=Ag(t)e"! into the original equa- In this case Eq(4.15 is actually the RG equatiofto all
tion. That is, Eq.(4.9 is the proto-RG equation, and from orders and is not the first order equation. We would need
this we know trivially that the perturbative RG result is cor- some insight to derive this from naive perturbation results.
rect to all orders. At least in our original naive RG, the problem is not very

The RG equation can be obtained by solving &q9) for  easy.

dAgr/dr order by order as follows. Noticing that differentia-  An interesting point of this example is that the RG equa-
tion is equivalent to raising the power & we obtain to the tion of this RG equation is useful to study its long-time be-

lowest order havior. Scaling the time variable as- \[¢[s, the RG equa-
tion becomes
A (4.10
- — — € . . 2
dr R d<A dA
Q=sgrte>(A— Vel E). (4.1
Using this to the rhs, we get to ordef
dA Consider thee<0 case. Its unperturbed solution rea@ls
— R (e+2€)Ag. (411 =Be®+c.c. The proto-RG equation can be obtained by as-
dr suming thatB is time dependent:
Differentiating this further gives d2B dB dB
—+2i——=+—€|iB+—]|. (4.18
2 d<? ds ds
d“Ag dAr
=—e——=€AR (4.12 . ]
dr? dr Hence the lowest order RG equation B is assumed to be
not infinitesimally small
to order €. From this and Eq(4.11) we can obtain, for
example, to ordeg® dB_ J-e 5 419
ds 2 '
dhe__ +2€e?+5€%)A 4.1
dr (e+2e €)AR, (4.13 This is a convenient occasion to consider the counter or

difficult examples mentioned in Sec. Il. For EQ.20 the
etc. proto-RG equation reads
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tion, it is not very illuminating. One might guess that, since

d’A  dA  dA O S :
—+2i——=—¢€|iA+—|. (4.20  the original equation is real, we have only to consider the
dt? dt dt following equation
If we may assume tha is of order 1, then we can iteratively d2A dA
solve this ford A/dt. To the lowest order we obtain F +2i F T e(wA+A*)— eAe?™. (4.29
dA €
at EA' (4.21) However, this is wrong, because the nonautonomous driving
term mixesA* andA.
From this we obtain The easiest method that still allows us to avoid explicit
calculation of perturbative results is to expand as
d’A € . . )
—=—A (4.22 y=A(t)e''+ eB(t)e¥ + €2C(t)e® + - - - +c.c.
2 4
dt (4.29
to ordere”. Hence to ordee” the RG equation reads This form is easily guessed from the fact tledt®t appears
2 with €. The procedure is to get the equatiofisoto-RG
dA € € . -
|4+ —jl|A. (4.23  equations for the coefficients, and then reduce them to the
dt 2 8 equation ofA alone. To ordek? we have
For Eq.(2.21), the proto-RG equation is the original equa- d2A dA
tion itself: W+2i a=—e(wA+A*)—ezB. (4.30
dA .
LA EA (424 The equation foB is

The problem is that th& we are interested in is of orderor

smaller. Therefore both terms on the right hand side can be

comparable, so no further reduction is possible. That is, we

must interpret that the proto-RG equation is the RG equatioBince derivatives give higher order powersepfve see from

itself. The lesson of this example is that, although we tend tqhjs B=A/8 to ordere. Hence to ordere? the proto-RG

claim in our RG approach that we do not need angriori equation is reduced to

estimate of the solution, we must know at least what solution

(around what fixed point, for exampleve wish to study and d2A dA A

its rough order. — +2i y e e(wA+A*)— ezg. (4.32
As a not-so-trivial example of reducing the proto-RG to dt

the RG equation, let us consider the bifurcation problem oﬁ

the Mathieu equation: the problem is to find the rangevof

€

dzB+6'dB 8B|=—€eA-wB+e3C. (4.3
e Idt =—eA—€e“wB+€°C. (4.3)

t is easy to reduce this to a first order differential equation
from which we can immediately read off the stability re-

such that quirement. Recall that the ordinary singular perturbation re-
d?y quires expansion in powers et
— +y=—¢e[w+2c052t)]y (4.25 Another simple example of the nonautonomous equation
dt? that requires some care in reducing the proto-RG to the RG
) o equation is
does not have a bounded solution. Although this is not an
autonomous equation, for linear problems, it is easy to see d2u
that the proto-RG method works to all orders. The unper- — +u=etu. (4.33
turbed solution reads dt?
yo=Ad!+A*e 't (4.2 This is linear, but we use the orderterm as a perturbation.

We use the same zeroth order result as befage: Ae't
We must first write down the proto-RG equation. Assuming+c.c. Then, the first order correctian obeys
that A is a function of time, and introducing E4.26) into

Eq. (4.29, we get d?uy ,
— +u=tAé'+cc, (4.39
d?A  dA . dt
— +2i ——+c.c=— e(wA+A*)— A’ +c.c. ,
dt? dt u; has the following form:
4.2 )
u,=P,e''+c.c., (4.3

Here, c.c. denotes the complex conjugate terms. Although
we may call this the proto-RG equation of the Mathieu equawhere with the aid ot in Eq. (3.4)
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LP,=etA. (4.36) transformation. Let us write the Laplace transformygfto
beY,. Then, formally Eq(4.3) reads
Therefore the proto-RG equation is
5 (s+1)Y,=—s°Y,_;. (5.2
—+2i

R A= etA. (4.37)

It is easy to solve this iteratively as

To reduce this equation to a first order equation, we must be

2\n
slightly careful, becausdA/dt andd?A/dt? are both of or- Y, = _s Yo. (5.2)
der e. This can be seen as follows. Obviously from Eg. 1+s
(4.37) dA/dt=0J €]. Differentiating Eg.(4.37 once, we
obtain If we sum all these terms, we get
3 2
(d—3+2id—2 A=¢€ A+tz—?). (4.39 Y=Y, 1 _ (1+S)Yo_ 53
dt dt 1+ es?/(1+s) 1+s+es?
The right hand side is still of ordet, so d?A/dt?=0OJ €].
Differentiating Eq.(4.39 once more, we obtain Thus we can recover the original differential Eg.1), so
that obviously we can recover the transcendental behavior
¢ d® dA d2A ~e~ ¢, The reason why we could not get such a term in the
@4'2' ae A=e ZEHF (439 preceding section was simply that we chose the initial con-

dition such thaty,(0)=A andy)(0)=—A (as is demanded

Therefore we conclude thafA/dt® or higher order deriva- by the zeroth order equatipnThis condition exactly re-
tives are higher order thae. Hence from Eq.(4.39 we  Mmoves the contribution from the zero of the denominator of

obtain Eq. (5.3 that behaves like & This is also the only condi-
tion we can impose consistently to the first order differential
d2A i equation.
¥=—§6A. (4.40 In short, the full information about the transcendental

terms is still retained in the perturbative result itself, but we
(so to speak, meticulouslydiscard it through imposing a
special auxiliary condition in the usual singular perturbation
dA i € approach. Therefore if we stop discarding the full informa-
qi - pteAt A (4.41)  tion, or if we try to retain the extra information needed for
the transcendental terms, we should be able to get the result

This is indeed the correct RG equation to ord@btained by ~€ven beyond all orders from perturbative results.

a more explicit conventional procedure explained in [R&¥. One (and the conventionalway to retain two auxiliary
The reader may say that the above calculation is possibleonditions is to scale the variable &s es to magnify the
because the time-dependent factbin( this casgis simple; b_oundary layer. Then,_ the perturbation term becomes non-
if it is a general time-dependent functid(t), then the pro- singular, and we obtamed .the transcendental terms as well.
cedure would not work. A short reply to this criticism is: if However, here we avoid this approach and keep the singular
approaches similar to the above do not work, then RG probature of the perturbation in the most naive way. The reader
cedures using explicit singular terms are hopelessly complimay well say that practically the conventional method is
cated(this means the conventional singular perturbations aréimple and standard enough, so there is no point to give a
hopeless as well If some higher order derivatives vanish ‘nonscaling” approach. First of all, we wish to show that it
identically (i.e., if f is a polynomial, the procedure works. IS untrue that the scaling of the variable is necessary to get
Otherwise, there is no mechanical way. That is, there is ndhe result beyond all orders contrary to the general belief.

mechanical way to obtain the global behavior. The main aim of this section is to point out:
(i) The main difficulty of the naive perturbation approach

is solely due to its incapability of accommodating all the

auxiliary conditions for the original problertdue to the de-
As we have seen in the preceding section, our RG methodrease of the order of the differential equajiolf we can

works to all orders. However, it is clear that the methodovercome this difficulty, we can recover even the “beyond

explained there cannot give the other solution of Egl) all orders” results perturbatively without rescaling the vari-

whose leading order behaviorés V<. To obtain such a term able.

is called the problem beyond all orders. As we have seen (ii) The resultant approach has the same structure math-

above, the RG approach is just to sum the secular terms famatically as the so-called exact WKB theory, the only rig-

linear problems, so that we discuss only the summation irous singular perturbation theory beyond all ord@@.

this section and will not explicitly mention RG. Let us consider the simplest example with a singular be-
Let us reconsider Eg4.1) with the aid of the Laplace havior:

Using this in Eq.(4.37), we obtain to ordeg

V. BEYOND ALL ORDERS
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dy If the equation is a second order equation, then the initial
€qt TY=0 (5.4 condition fory,(0) andy(0) may be imposed by an inho-
mogeneous term consisting of a linear combinatiors@f

lts general solution iy=Ae V<. If we perform the expan- andé’(t) with homogeneous initial conditions on.

siony=ygy+ey,;+ ..., then we obtairny=0, which is con- From the above calculations, it is tempting to conjecture

sistent with the asymptotic expansion of the exact solution irthat perturbative calculations, appropriately organized, can

powers ofe. The problem is that the zeroth order equation isalways give us all the information about the original equa-

not even an ODE in this case, so that no initial condition carfion. Consequently, the results beyond all orders can be ob-

be imposed. tained perturbatively. A crucial ingredient is to retain the
The most natural approach to rescue the situation seentiegrees of freedontflexibility of accommodating suffi-

to be as follows. An initial condition may be imposed with ciently many auxiliary conditionsin the original problem in

the aid of the delta function as the perturbative procedure.

We wish to point out that the essence of the above calcu-
dy lation, the formal expansion- Borel transformation with
Hﬂ/: ad(t) (5.9 respect to the expansion parameter, is the same as that of the

so-called exact WKB analys[20].

€

with a homogeneous initial conditiop(0)=0. If the initial
condition for the original problem ig(0)=A, thena= €A,
so that if we treat the delta function as an ordinary function, VI. GENERAL CONSIDERATION ON PARTIAL
then one might observe that when we drop the derivative, we DIFFERENTIAL EQUATIONS

should drop the delta function term as well. However, our

experience with the Laplace transformation tells us that we§,
should retain the delta function term to the zeroth oxtleat

is, € times & or its derivatives must be treated in a special
way).

The easiest way to solve E¢p.5) is with the aid of the
Laplace transformation, but to explore the possibility of
studying nonconstant coefficient equations, we avoid this a
proach. The zeroth order equation reads

In the case of ODE’s, the secular terms due to the pertur-
ation seem unambiguously identifiable, and they are obtain-
able by the Lagrange method. The operator in the proto-RG
equation(and eventually that in the RG equatjas chosen
to remove these divergences. If we inspect the same proce-
dure for PDE’s, we realize that the situation is more compli-
cated, because the solution to the inhomogeneous equation is
p(jenerally not unique.

For the illustration sake, let us study a simple example,

Yo=ad(t). (5.6
2
The perturbation equations read (i _ (9_) b=1, (6.2)
ot (922
dyn-1
Yn=~""gr (5.7

d n
—ea) 4(t). (5.9

i) S(t)=ad(t—s). (5.10

1
B(s):nzoam —s5;

o

for t>0 andzeR. t or —z%/2 is a special solution, and the
Hence we obtain general solutionf21] to this equation may be obtained from
the general solution to the homogeneous diffusion equation
" plust, for example. The problem is clear: even the divergent
Yn= a( N ﬁ) (1), (5.8 (or seculayterms need not be unique. If we try to remove the
(space-timg secular term, depending on the choice of our
so that secular solution to the inhomogeneous equation, the resultant
" RG equations are different, because, according to the proce-
. 2 dure employed in our previous papers, the RG equation is
y—n=0 @ determined by the condition to remove the secular terms.
One prototypical method was utilized in Rg8], but was far
To sum this highly singular series, we use the Borel summafrom systematic and complete. This is the reason why there
tion method. Let were controversie§9,12] as in the case of the Swift-
Hohenberg equatiof26].

If Eq. (6.1) is a perturbation equation, then the key step to
construct the proto-RG equation should be to find an opera-
tor that maps the clas® of (space and/or timesecular

Then, the Borel summation result reads functions that satisfy Eq6.1) to 1 (or something known or
. tractable. Again, there may be many different operators that
e e ¥ e can do the job. We wish to map the smallest set contaifding
y= Zfo B(s)e ™*ds= € € (5.19 (hopefully itself to a known object. We have not yet codi-
fied all of the characterizations of the required map.,
Thus we have obtained the result beyond all orders from differential operator, but at least it is clear that we must look
“naive” perturbative calculatiorf19]. for the lowest order operatdt‘antiprincipal” part) among
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them that map$) to, say, 1. This is in accordance with our we get to, the lowest nontrivial ordéstep(1)],
interest in the most global space-time features of the solu-

tion. d , "

In any case, the crucial point is that we must deal with a g L) ¢=—Hyy(z—H)+(Vof)2yi(z—1), (7.5

set of functions, not individual secular terms, if we wish to

perform renormalization-group theoretical reduction. Therewherel is the linearized operator obtained from the spatial
fore the idea of the proto-RG approach introduced in thepart of the unperturbed equation:

preceding sections, or more generally the strategy to avoid

explicit calculations as much as possible, becomes more rel- L= 1—3l/fﬁ(2— f)+(9§- (7.6
evant to PDE’s than to ODE’s. To illustrate our approach,
we give several examples. H is twice the mean curvature of the interface, &hdis the
gradient operator acting on the functionsofandy only.
VII. EVOLUTION EQUATIONS When a wakelike disturbance is generateddoes not vary
slowly with respect to X,y) as assumed in Eq7.5. How-
A. Interface dynamics ever, the disturbance does not contribute to the leading order

Consider the following simple semilinear parabolic equa-variation off. Notice thatyy (z—f) is the zero eigenfunction
tion (the time-dependent Ginzburg-Landau equation for thedf the operatorL (corresponding to the Nambu-Goldstone
¢* free energy functional without conservatjon mode. Therefore this can be the source of the secular term.

Notice further thatyy is orthogonal to this function in thie,
P sense(as a function of)
=R :
ot Yy Ay (7.0 Let us renormalize Eq(7.4) as (we follow the abstract

procedure at the end of Sec.)lll
It has a plane kink solutiogpy ,

z 72 7.7

Yk (2)=tanh —
where the last subtraction describes the secular terma in

that describes an interface between two segregated domair¥éith the seculat dependence being replaced witfand that

i (z— f) describes a kink displaced tpyn thez direction, if ~ 0f zby £ (with physical insight one can say that there is no
f is constant. Note that=f describes the interface position. Secular dependence anto the lowest nontrivial order, but

If the interface is not flat, that is, ffis a nonconstant func- We do not use this insightt andr may remainand usually
tion of x andy, then i (z— f) is no more a solution to Eq. do as in Eqs(3.6) or (3.44]. This splitting of the secular
(7.1). Assumingy(z—f) with nonconstanf as an initial behavior corresponds to replacing the differential operators
condition of Eq.(7.1), we wish to describe the evolution of aS
the system. If the deviation dffrom being constant is lo-
cally not great, then the time evolution of the system should

) P, =P Z— (7L, X))+ o(t, N — (7,441,

d Jd J d 1%

-t —, ——a—+—= 7.8
be described by the time evolution of the interface shape, gt ot ar 9z oz al (7.8
that is, in terms of the time evolution éf
We split the rhs of Eq(7.1) into two parts as in the construction of the proto-RG operator. The needed

projection is the projection onto the subspace spannetiby

P 3 Py with respect to the scalar product of thg space of func-
il Rl A = +A, (7.3 tions of z in the present case. Equati¢f.5) implies [step
3]

whereA, is the Laplacian acting only on the variabbeand -
y. The last term is regarded as a perturbation that becomes Se=—H, (7.9
nonzero due to nonconstancy fofNote that its smallness is
not due to any small parameter associated with the operato‘i’,r
but due to the gentle dependence of the functiorx@amdy
upon whichA, acts(that is, due to our choice of the initial
condition. We will not write explicitly the parameter denot-
ing the smallness of the perturbation and the perturbative
terms in the solutiofiwe could writef (ex, ey) with small modulo the component orthogonal . Applying the
to be explici]. Since we study only the lowest nontrivial proto-RG operatosS to Eq.(7.7), we obtain
order, clear indication of the order is not needed. Notice that
( g P J 9

o=y (z—f(x,y)) is a solution to the unperturbed equa-
— ———2— — | Y z—TR(7,L,X,Y))

LA —) p=—Hyi(z—f) (7.10

tion.
Writing the deviation of the true solution from, as ¢,

b=dot o, (7.4

[
—[HXyY. D (z= TR, (7.1
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where|| denotes the component in the null space.o€om- 9 32 P 9 o\ .
uting this explicitly, we arrive aftstep(4 B S — = .
puting plicitly afistep (4)] T T zlsoj 0, (719

(9 2

Frap fr(t,z,x,y)=—H(x,y,1), (7.12 wheres? is omitted from the proto-RG operator since secular

terms in fpi are, at most, polynomials of degree one with

where we have used thg{; is orthogonal toj, . The equa- respect tof. Applying this modified proto-RG operator to
tion in the orthogonal complement of E(7.11) must also  Ed. (7.16 and noting Eq(7.18, we obtain
vanish[22]. This gives the condition thaif r/9{= constant
(to this ordey, so that actually, there is no second derivative & 9 d
of fr in Eq. (7.12. Thus the outcome is equivalent to the 97 (7_52_ (9_772_ % o b (z—1r(7,p))
famous Allen-Cahri23] equation governing the normal ve-
locity of the interface. The derivation is an RG version of
Kawasaki and Ohtf24].

In the above, we have assumed that the initial deviation i
explicitly given by the nonflat interface. Instead, we may
assume that the initial deviation is given by

Y=ot @1+ @+, (7.13 (‘9 ” {92> (t,1)=0.

H (7.20

where|| denotes the component in the null spacé obJsing
the fact thaty is orthogonal toyy in the L, sense(as a
Yfunction of Z), we arrive at

(7.20
where o= ¢ (z—fy) (fg=const) is an exact solution of

Eq. (7.1 and ¢; is the jth order perturbed field. This time, _
the first and the second order deviations obey the foIIowmgTh'Ii Itshsz::etzoig(g(lsaas;r%?j]s;;] a s(;3(9ec;|LaﬁI f)(IrRm of the

linearized equations: singular term—tH ¢y (z— f(x,y)) was used. The rest is the
9 same but is maybe simpler than the derivation above. The
(E_AZ ) ¢1=0, (7.149  procedure can be justifiabeposteriorj but a fair amount of
insight was required.

P The merit of the RG derivation of the Allen-Cahn equa-
——A2—L> ®2=—3o¢?, (7.15  tion may be an explicit information easily obtained from its
at derivation about its valid time range as discussed in Ref.
[25]. The result should be meaningful after renormalization
up to the time scale afH~1. SinceH~t ' (as, e.g., can
be seen from dimensional analysithe Allen-Cahn equation
cannot be reliable forever. Physically, this is obvious, be-
cause we have ignored the displacement of the average po-
sition of the interface in the derivation.

wherelL is given by Eq.(7.6) with a constantf=f,. Note
that Eqs(7.14) and(7.15 have secular solutions of the form
P(t,r) ¢ and Q(t,r) ¥+ P(t,r)24 /2, respectively, where
P and Q are polynomials ot andr. Here, it is easy to see
thatP does not depend anandd,Q is constan{16]. Let us
renormalize Eq(7.13 up to the second order as

P(t,r) = (z—fr(7,p)+ @q(t,r) B. Phase equation for spatially modulated oscillation

- - Let Xe R" be ann-dimensional vectoKdescribing con-
TeAtD=eurp2) = a(mp2), (716 o cions oh chemical specigs Suppose

where the last subtractions remove the secular terms;in dx

with the seculart,r dependence irP(t,r) being replaced — =F(X), (7.22
with 7,p=(&,7,{); zin ¢y and ¥ may remain. This split- dt

ting of the secular behavior corresponds to replacing the dif-

ferential operators as E¢7.8) and whereF is a vector-valued function, has a periodic solution

Xo=Xo(wt+ ¢), where the phase can be any function of

E R T space determined by the initial condition. Let us consider a
———t — (7.17  system that can be spatially inhomogeneous governed by the
ar dr  dp . - . L oS
following reaction diffusion equation:
in the construction of the proto-RG operator. The needed
L L , X
projection is the projection onto the subspace spanneg,by — =F(X)+DAX. (7.23
with respect to the scalar product of the space of func- ot
tions of z in the present case. Equatiofiz14 and (7.15 ) ) ) )
imply We study the solution of this equation close to the spatially
uniform X,. Again as in the first procedure in the preceding
S(@1+¢5)=0, (7.18 subsection, the magnitude of the last term, the perturbation
term, depends on the phase functipnWe choose this func-
or, tion to be only gently space dependent. Let us write
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X:XO+X1+"' . (724) &Xl
— = VxF (Xo(@t+))Xs + DAX;, (7.33

The first order term obeys

X,
X —Z =V F(Xg)Xo+DAX,+ (1L/2)V2F(X): X2.
LoV F(Xo(wt+ @)X, +DAX,, (7.29 ot xF(Xo)X, 2+ (L ViF(Xo): X1

at (7.34

whereVy is the gradient operator iR". SinceX(, where’ Since Eqs.(7.33 and (7.34) have secular solutions of the
denotes the differentiation with respect to the phase, is a nuame formP(t,r)X} and Q(t,r)Xy+ P2(t,r)X3/2 as in the
eigenvector of the linear operator actingXpin Eq.(7.25,  preceding subsection, where denotes the differentiation
the solution to this equation may be renormalizedsiep  with respect to the phase, the solution to this equation may

(2)] be renormalized as
X(t,r)=Xg(wt+ @r(7,1))+ X4 (t,r)— )A(l( 71,1, X(t,r)=Xg(wt+ opr(7,p))+ X1 (t,r) +Xy5(t,r) — 5(1( 7,t,p)
(7.26 ~
_XZ( T:t:P): (735)

whereX; is X; with its secular term variables replacedtas .
— . From Eq.(7.25) it is obvious thatS= Pd/dr, wherePis ~ WhereX; is X; with its secular term variables replacedtas
the projection operator onto the null space of the linear op— 7 andr— p. From Eqgs.(7.33 and(7.34, we obtain

eratorVyF(Xg). Therefore we havgstep(3)]

2
5 S X;=0, (7.36
a—Txl} =D[AXo]}, (7.27) =
I where
where[ ]| denotes the projection onto the null space of the p pr PRy
linear operatorVyF(X,). With the help of this Eq(7.26 S=P|——| —+2——|D], (7.37
gives the following proto-RG equatidistep(4)] ar \gp? dpIr

whereP is the projection operator onto the null space of the
=D[AXp(wt+ r(7,1)]|, linear operatow,— V«F (X,). Then, Eq.(7.35 gives the fol-
(7.29 lowing proto-RG equation:

where we have replacegd in the rhs with the renormalized SXo(wt+ ¢r(7,p))=0, (7.38
counterparfconsistent to this ordgrlt reads more explicitly  \ynich is identical to Eq(7.29. The rest is the same.
as In this second derivation, we have not assumed explicitly
that the spatial variation of the phagds small. Instead, the
—D[X)A pr+ XS(VQDR)Z]M _ (7.29 secular solqtiqns of Eq$7.33 and(7'.34) are chosen so t.hat
they are eliminated by renormalizing the phd4€]. This
choice of the secular solutions implies that small perturba-
From this we obtairistep(5)] tions around the exact solutio, with a constant phase
yield only a small deviation from the constant phase tfor
Jer 5 ~0O(1) andr~0O(1). Theresultant phase Ed7.30 shows
W_BA‘PRJF | Verl*, (7.30 that the phase deviates substantially from the constant value
for a longer time or a larger spatial scale.

J
E_Xo(wt‘*' er(T,1)) ”

Jer
[Xé or

where
C. Taniuti-Wei reductive perturbation

a=({Uo" DXo)/(Uo- Xo), (7.39 The original Taniuti-Wei reductive perturbatid] ap-
, , plied to simple waves can be given RG reductively as fol-
B=(Ug-DXp)/(Ug- Xp). (732 ows. The starting equation is

Here, ug is the left null eigenfunction ofVyF(X,) [i.e., d J

(up- VxF(Xp))=0], and( ) is the integration ovef0,27] S UTAU) - U=0, (7.39
with respect to the phase variable. This scalar product real-

izes the needed projection in the proto-RG operator. ThevhereU is a vector, andA is a matrix. We assume this is a

result is the standard phase equation. hyperbolic equation. We study a small disturbance around a
Again as in the preceding subsection, we can assume thgpnstant solutior ,:

the unperturbed is strictly spatially uniform. In this case
the first and second order terms obey U=Ug+eUs+---. (7.40
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Accordingly, A is also expanded as d 9 d
(E_'ija_g) hJR(T!§)+G[L](RJVUAO)Rj]hJRé,_é«:h]RZO’

A(U)=Ag+eU; -V Ag+ - . (7.47) (7.50

To ordere This is also the RG equation for this case.
LU,=0 (7.42 The method to construct a proto-RG operator may be
' summarized as follows: Ldt(d,)u=0 be the unperturbed
where linear equation, andy is its solution(of our interest Herex
collectively denotes all the independent variables. Then, split
d d the differential operators asg/dx— dl/dx+ dldy, introduce
L=—+Aoo, (7.43  the results intd_ and subtract the original operator from this
to make S’ =L(dyx+d,)—L(dy). In this procedure all the
and the next order is functions appearing ih must be moved beforehand to the
left of differential operators, calculating needed derivatives
Uy [e.g., @lat)f(t)—Tf'(t)+f(t)alat]. Then, applyS’ to the
LUz= _(Ul'VUAo)W- (7.44 perturbation result with secular terms, and project the result
onto the null space df(d,). Finally, identify y andx in the
Equation(7.42) is essentially a wave equation. Let us assumgesult. The overall result defines the proto RG operatpas
that the eigenvalues of the matiy be real and distinct and exemplified in Eq(3.45].
we rewriteA, asX;v;R;L; in terms of its left eigenvectdr;

and right eigenvectoR; such thatlLjA,=v;L;, and AgR; VIIl. NEWELL-WHITEHEAD EQUATION
=v;R;, respectively. Then the general solution to EG42 AND ITS GENERALIZATION
reads

We consider here the two-dimensional Swift-Hohenberg

B B equation widely used as a simple model of the Rayleigh-
Ul_; hj(x=vOR;. (749 Benard convectiorj26],
Here,h; are determined by the initial condition, &g (initial au 3 P 5P 5 2
wave form is modifiable(i.e., we may renormalize)it Sy euTu er (9_y2+ k2| u, (8.1

Since all the velocities of the simple wavE®mponents
are distinct, far away from the source we may ignore theyheree is a control parameter or a reduced Rayleigh num-
interferences among these waves. Therefore let us considggr, 4 measure of the degree of convective instability of the
only h; as a representativél, contains a resonant term for qyiescent stata=0. For small positives, the system exhib-
each component. Hence E@.44 reads{step(1)] its a supercritical bifurcation. Since we wish to treat

3 ; ; 3
_ _ Vo —u® as a perturbative term, to be consisteatandu® must
LUz= =hj(x=0;Ohj (x=v)(Rj- Vi) AR be of the same order. We scai@s/eu, and denote the new
=F(h(x—u;t)). (7.46 u with the same symbol. Then, the original equation reads
It is obvious that a secular contribution arises frérth(x _ 3 52 32 ) 2
—v;t)) as can be seen easily from the comoving coordinates. gt e(u—u’)— a2 + (9_y2 +k] u. 82
The usual subtraction and absorption iktp can be done for
each component gstep(2)] We consider this on the whole plane for all positiveds a
zeroth order solution, we choose the roll solution alongythe
(U (t.x)=Uo) e=hjr(7,£)R; + e(Ua(t,X) axis: Aé**+c.c., whereA is a complex numerical constant.

" We expandu around this solution as

—Uy(r,&x—0;t)). (7.47) P

— ikx * a—ikx 2 .
Projection of Eq.(7.46 onto the eigenvector; gives|step u=AeT+ATe el teupt e (89

(3] The first order correction obeystep(1)]
Soz(T,f,X—th)E[Lj'((9T+A05§)02]:[F]\|, au, 2P 2 . .
(7.4 —=+| =5+ 5 +k?| U =(1-3|A[P)AN— AledKx,
gt \ox?  ogy? !
with (8.4
[F]H:—hj(X—vjt)hj'(X—vjt)Lj(Rj'Vu)AoRj- This is a linear PDE, so we may write the solution in the
(7.49  following form [step(2)]:
Hence the proto-RG equation [istep(4)] up=Py(t,r) e ™+ Q,(t,r)e3k (8.5
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wherer=(x,y). Sincee'** is a null solution to the linear
operator, P; must contain spatially seculdthat is, un-
bounded or not integrabléerms.

Since
g [ & S .
— _+_+2 ikx — 1 _ 2 ikx
n (axz v k2| |P,e*=(1-3|A|)2)AX,
(8.6
we have[step(3)]
J + " +4ik 7 +2(92 7
J— [ I [ —
gt x4 axs  ay? ox?
+ 4|<2(?2 +4ik > 0 + &4) P
J— — | — — —
x> ay? X oyt |t
=LP,=(1-3|A|)?A. (8.7

Similarly, we can obtain

Jd 92 92 6ik Jd 8K 2 3
(8.9

From this, we clearly see th&; can never be a constant, but
Q, can.
The renormalized perturbation series reads

u=Ag(7,p)€"*+ e[ P1(t,r) — Py(,p) ]

+Q,e¥**. .. t+c.c. (8.9
Hence the proto-RG equation reddsep(4)]
S+l Ar(Tp)=e(1-3|Ag)Ar,  (8.10

wherelL . , is L with the replacement— 7, r— p. It should

™.p

PHYSICAL REVIEW E 63 046101

To obtain the next order, we need the equation for the
second order term:

P 2
| —+—+K?| |u,
X% ay?

Ay
at

={(1—6|A|?)P,—3A%P} —3A*2Q,le'*
+{(1-6|A|*)Q,—3A%P}e**—3A%Q, e,
(8.12

The general form of the solutiofthe special solutionis
given by

U= P,(t,r) e+ Q,(t,r)ed+ R,e5  (8.13
Here, P, is obviously secularQ, is also secular because the
inhomogeneous term witke®** is already secular in Eq.

(8.12.
LP,=(1—6|A|®)P,—3A%P} —3A*2Q,, (8.19

but note that we need only the last term, becaRgés not
constant. From Eq8.8) we obtain

A3
le - W (813
Hence the proto-RG equation reads
LAR=€e(1—3|Ag|D) AR+ €? > |Ag|*A (8.1
R™ € R RT € 6K Rl AR- .
Here, we have used the fact that the terms contaiefd,
e®*X etc., may be ignored, and that we may ignore all the

terms explicitly dependent on space time due to the space-
time translational symmetry of the syst¢&v]. This is actu-
ally the RG equation to ordes.

be seen easily that to obtain this result, we may follow the “\tice that Eq(8.10 is the equation derived by Graham

more abstract procedure in the preceding subsectionas
is noted in Sec. I

L contains much more terms than the standard result. Taroppinga“/&x“

[9]. Itis now clear that it is not a consistent equation to order
€. Up to ordere®?, we can make Eq(8.10 consistent by
in L [28]. If we wish to retain all the dif-

reduce the equation further, we must choose the way Wg,ential operators in Eq8.10, we need an additional inho-

observe the system. If we choose the order of the variables
alot~dPax’~d*lay*~e (e, t~e L x~e Y2 andy
~e Y then[step(5)]

J 3 ? a9 &

— —4K?— 4+ 4Kk — — +——
e 4k P 4|k5y2 ax oy Ag(t,r)

=e(1-3|Ar/?) AR, (8.1

#Rogeneous term as in E(B.16).

Let us apply the proto-RG operator scheme to the second
order result. Its merit is that we need not assume the form
such as Eqs(8.5 or (8.13. From Eq.(8.12 the operator
reads

2
+k?

2

a 2
—+—) +(—+—
€ X dn 9y

the usual result. An important observation is that there is no
other consistent choice if we wish to avoid a simple diffusion
equation to this order. For example, if we wish to choose
Iy~ a% ay?ox®~ (9l at) ~ €, then §%/9x? and 93/ Ixay?
dominate the lhs and cannot balance the oedarm on the  whereP is the projection operator extracting the coefficient
rhs. Therefore Eq(8.11) is the only consistent nontrivial of e’ (subsequent replacement of the variables suck as
result to ordere. — ¢ is implied).

(8.17
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SU,=[(1—6|A|2)u; — (3A2e2kx 4 Ax2e-2ikxyy 1 (8.1 Iayer probler_ns in our approach. Therefore if we use the tra-
2=[( [AIHuL=( July, (818 ditional terminologies, we conclude that reductive perturba-
where[ ]| means the coefficient &f** (and then the inde- tion is the key to singular perturbation. _
pendent variables are all replaced accordinghpplying the In this paper, we have largely freed the RG theoretical
proto-RG operator to the renormalized perturbation, we havéeduction from explicit perturbation results with the aid of
the proto-RG equation. For example, to the lowest nontrivial
d g d\% [a a9\? 2 order, that is, to the order many famous phenomenological
— || =+ =] +|—+ =] +K? - : =
o7 9E | ax an  ay equations are obtained, we do not need any explicit result.

The traditional reductive perturbation already has this fea-

92 2 2 ture, so this may not be surprising. Now we can combine this
—| =+ —2+k2 }AR( r,p)e™=-...  (8.19 advantage and the advantages of our RG procedures illus-
2SN trated in Ref[8]. As is explained in Ref6], reductive per-

turbation sets up a function spagesually anL, spacg to
solve a given problem and the condition to force the solution
into this spacgthe solvability condition gives the reduced
equation. In contrast, the reductive RG constructs a solution
in a much wider function space, and then later trims the
solution by renormalization to fit in a certain conventional
kX bt ot 4 e 3 function space. Therefore reductive RG is conceptually more
Q.e . This gives fls(k_QAl— —A” (or —A*”). Hence the natural(less constraingdand is expected to be more versa-
term proportional t@'* in Eq. (8.18 reads+3k*A|A[*/64. jja However, we have not been able to make any relevant
Therefore the result agrees with the one already obtained. \athematical statement, because the general idea of doing

functional analysis without setting up function spaces is re-

IX. CONCLUDING REMARKS mote from the current functional analytic practice.

The key element of singular perturbation is to separate out RG, especially the field theoretical RG, is a method to

global systematic effects of perturbation. If we can deriveSXtract structurally stable results against alteration of micro-

equations governing these effects, then the most importaﬁ‘[COpIC details. As has been clearly demonstrated in[IR6f.

results of singular perturbation can be obtained. These equg—r summarized in Re{6], the mathematical structure of the

tions are reduced equations such as slow-motion equatiorpsermrbative RG applied to dif_ferenti_al equations gnd that
derived traditionally by reductive perturbation methods;."’l.pp“.ed to field theory are identical. Since asymptotic apaly—
Renormalization-group equations in our approach are thg!S IS a method to discard “"nonasymptotic details,

equations governing the slow changes of the parameters th pymptotic analysis is almost tautologically a pursuit of

are integration constants of unperturbed problems. This i ructural stability in a certain sense. What sort of structural
. o stability we should pursue depends on the problem. The
why the RG approach naturally gives the slow motion equa inalogy between the field theoretical RG and study of long

tion and can reproduce results of the so-called reductive pef .
turbations. P P time behavior has told us that to extract stable features

If the equation of motion is known of the parameters tha ggainst perturbing initial conditior(®r short time behaviois

are slowly modified by the secular effects of perturbations'.S the asymp.totic analysis_of long time behavior. Our statis-
the global(e.g., long term behavior of the perturbed system tical mechanical RG experience strongly suggests that all the

is completely known. Therefore reductive perturbation isdsymptotic analyses can be cast into the RG theoretical form.

conceptually the key element of singular perturbation. In thisThIS is the reason that we feel the RG approach is much
ore general and more powerful than we have already expe-

E_aep_’e:hvgiehsi\lltes z??ggugg\% tge?tlafggzm?gtﬂgu?fn s&ynz[lonér?enced. It i_s desir'able to demonstrate its generality theoreti-
explicit singular perturbation results. Consequently, reduc—ca"y’ not with various examples.
tive perturbation(realized by RG methodsas become the
key, not only in principle but in practice, to singular pertur-
bation. Besides we wish to point out that the RG equation Y.O. is grateful to Fred Furtado, Yasu Shiwa, and Sin-ichi
facilitates rigorous error bound$]. Sasa for useful discussions, corrections, and correspon-
The reader might ask how general the reductive RG isdences, and to Yoichiro Takahashi for his hospitality at the
For example, in the boundary layer type problems reductivéresearch Institute for Mathematical Sciences in Kyoto and
perturbation is seldom mentioned. In our RG approachfor a partial financial aid. The present work is, in part, sup-
boundary layer type problems are solved without matchingported by the National Science Foundation, Grant No. NSF-
from the inner expansiofB]. Therefore these problems are DMR 99-70690, and by the Japan Society for Promotion of
equivalent to problems of long term asymptotics. Thus reScience, Grant-in-Aid for Scientific Researgh) 09304022
ductive perturbation becomes meaningful even for boundaryrepresentative: Y. Takahaghi

We immediately see this to be equalé*(s/dr+ L. p)ARr
=---. We need the nonsecular termsunto write the right
hand side of Eq(8.18 explicitly. We must look into the
detail somewhat. EquatiofB.4) tells us that(i) the term
proportional toe*'** is secular, andii) the term proportional
to e*3*% is nonsecular, so we look for the term of the form
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